- 相關(guān)推薦
數(shù)學(xué)畢業(yè)論文-切比雪夫不等式的推廣與應(yīng)用
切比雪夫不等式的推廣與應(yīng)用
摘要:在估計某些事件的概率的上下界時,常用到著名的切比雪夫不等式.本文從4個方面對切比雪夫不等式進(jìn)行推廣,討論了切比雪夫不等式在8個方面的應(yīng)用,并證明了隨機變量序列服從大數(shù)定理的1個充分條件.最后給出了切比雪夫不等式其等號成立的充要條件,并用現(xiàn)代概率方法重新證明了切比雪夫不等式.
關(guān)鍵詞:切比雪夫不等式;隨機變量序列;強大數(shù)定理;幾乎處處收斂;大數(shù)定理.
The Popularization and Application of Chebyster’s Inequality
Abstract:The famous Chebyshev’s Inequality is usually used when estimating the boundary from above or below of probability . The paper presents popularization from four respects. First, the paper discusses its application in eight aspects and demonstrates a complete condition that the foundation of random number sequence coconforms to he Law of Large Numbers theorem. And then , the author analyzes its complete and necessary condition for foundation of Chebyshev’s Ineuquality. Furthermore, the paper makes a demonstration again for Chebyshev’s Inequality with the method of modern probability.
Key words: Cherbyshev’ Inequality; Random number sequence; Law of Large Numbers; Almost Everywhere Convergence;Law of Strong Large Numbers.
目 錄
中文標(biāo)題……………………………………………………………………………………………1
中文摘要、關(guān)鍵詞…………………………………………………………………………………1
英文標(biāo)題……………………………………………………………………………………………1
英文摘要、關(guān)鍵詞…………………………………………………………………………………1
正文
§1 引言……………………………………………………………………………………………2
§2切比雪夫不等式的推廣 ………………………………………………………………………2
§3切比雪夫不等式的應(yīng)用 ………………………………………………………………………5
3.1 利用切比雪夫不等式說明方差的意義………………………………………………………5
3.2 估計事件的概率………………………………………………………………………………5
3.3 說明隨機變量取值偏離EX超過3 的概率很小 ……………………………………………7
3.4 求解或證明有關(guān)概率不等式…………………………………………………………………7
3.5 求隨機變量序列依概率的收斂值……………………………………………………………9
3.6 證明大數(shù)定理…………………………………………………………………………………11
3.7 證明強大數(shù)定理………………………………………………………………………………12
3.8 證明隨機變量服從大數(shù)定理的1個充分條件………………………………………………20
§4切比雪夫不等式等號成立的充要條件 ………………………………………………………22
§5 結(jié)束語…………………………………………………………………………………………25
參考文獻(xiàn)……………………………………………………………………………………………26
致謝…………………………………………………………………………………………………27
【包括:畢業(yè)論文、開題報告、任務(wù)書】
【說明:論文中有些數(shù)學(xué)符號是編輯器編輯而成,網(wǎng)頁上無法顯示或者顯示格式錯誤,給您帶來不便請諒解!
【數(shù)學(xué)畢業(yè)論文-切比雪夫不等式的推廣與應(yīng)用】相關(guān)文章:
切比雪夫不等式的推廣與應(yīng)用03-07
數(shù)學(xué)畢業(yè)論文-全概率公式的推廣與應(yīng)用03-04
數(shù)學(xué)畢業(yè)論文-數(shù)學(xué)期望的應(yīng)用11-19
數(shù)學(xué)與應(yīng)用數(shù)學(xué)畢業(yè)論文開題報告模板12-06
數(shù)學(xué)與應(yīng)用數(shù)學(xué)本科畢業(yè)論文開題報告03-29
數(shù)學(xué)畢業(yè)論文-矩陣分解以及應(yīng)用03-04
應(yīng)用數(shù)學(xué)本科畢業(yè)論文開題報告12-07
數(shù)學(xué)畢業(yè)論文-淺析泊松分布及其應(yīng)用03-04
中華論文聯(lián)盟數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)畢業(yè)論文選題03-28