久久九九国产无码高清_人人做人人澡人人人爽_日本一区二区三区中文字幕_日韩无码性爱免费

數(shù)學史讀書筆記

時間:2023-01-12 13:34:46 讀書筆記 我要投稿

數(shù)學史讀書筆記

  細細品味一本名著后,相信你一定有很多值得分享的收獲,此時需要認真地做好記錄,寫寫讀書筆記了?墒亲x書筆記怎么寫才合適呢?下面是小編收集整理的數(shù)學史讀書筆記,歡迎大家分享。

數(shù)學史讀書筆記

數(shù)學史讀書筆記1

  又這樣過了一個月了,盡管也就那么的幾節(jié)數(shù)學史的課,可是,依然讓我聽得津津入味。

  認識數(shù)學歷史,重溫數(shù)學的發(fā)展道路。數(shù)學,似乎是一個枯燥的學科,但是,卻是我們生活當中,最為有用的工具之一,它是物理化學生物的搖籃,是政治經(jīng)濟學的基礎(chǔ),是市場里的公平秤,是我們量化自己的必要工

  具。數(shù)學,就是這么的一個“工具箱”,前人用萬分的努力汗水,把這個工具弄得更為人性化,更能讓我們好好地使用!稊(shù)學史概論》這本書,真的讓我對數(shù)學有了更深的認識。下面,我說說從《數(shù)學史概論》這本書,我又學到了什么。研究數(shù)學發(fā)展歷史的學科,是數(shù)學的一個分支,也是自然科學史研究下屬的一個重要分支。數(shù)學史研究的任務(wù)在于,弄清數(shù)學發(fā)展過程中的基本史實,再現(xiàn)其本來面貌,同時透過這些歷史現(xiàn)象對數(shù)學成就、理論體系與發(fā)展模式作出科學、合理的解釋、說明與評價,進而探究數(shù)學科學發(fā)展的規(guī)律與文化本質(zhì)。作為數(shù)學史研究的基該方法與手段,常有歷史考證、數(shù)理分析、比較研究等方法?梢哉f,在數(shù)學的漫長進化過程中,幾乎沒有發(fā)生過徹底推翻前人建筑的情況。正是我們不斷地為數(shù)學這座高樓添磚加瓦,它才能越立越高,越來越扎實,

  我也為可以這樣學習和認識數(shù)學而感到滿足!

數(shù)學史讀書筆記2

  可以說,在數(shù)學的漫長進化過程中,幾乎沒有發(fā)生過徹底推翻前人建筑的情況。

  而中國傳統(tǒng)數(shù)學源遠流長,有其自身特有的思想體系與發(fā)展途徑。它持續(xù)不斷,長期發(fā)達,成就輝煌,呈現(xiàn)出鮮明的“東方數(shù)學”色彩,對于世界數(shù)學發(fā)展的歷史進程有著深遠的影響。從遠古以至宋、元,在相當長一段時間內(nèi),中國一直是世界數(shù)學發(fā)展的主流。明代以后由于政治社會等種種原因,致使中國傳統(tǒng)數(shù)學瀕于滅絕,以后全為西方歐幾里得傳統(tǒng)所凌替以至壟斷。數(shù)千年的中國數(shù)學發(fā)展,為我們留下了大批有價值的史料。

  數(shù)學是研究現(xiàn)實世界事物的數(shù)量關(guān)系和究竟形式的一門科學。簡單地說,就是研究數(shù)和形的科學。斯科特在數(shù)學的海洋里抓住了競進帆船的駕舵,遨游了數(shù)學的成長歷程,從公元前,公元1000—1700,再到公元1800—1899直到公元1900—1960;從中國數(shù)學史到西方數(shù)學史,系統(tǒng)的講述了數(shù)的由來和發(fā)展。

  寫到這里,想到當時老師讓我們看有關(guān)數(shù)學史和數(shù)學文化的書的時候,自己還有很多的不情愿,F(xiàn)在,雖說沒有很深入地了解,也沒有記住很多東西,得到很多知識。但至少這些書中的內(nèi)容讓我看到了自己的渺小,看到了自己的不足。它讓我改變了對數(shù)學學習的態(tài)度,對其他很多事物的看法;也使我認識到自己的不足,告訴自己說當謙卑,努力去學習,去長進;同時對下學期的學習以及生活各方面的事物,還有關(guān)乎到以后的工作等等方面,都讓我有了一個新的認識與態(tài)度、看法的轉(zhuǎn)變,讓我更加明確了很多我該做與不該做的事情。

  以上只是些對自己的另一方面的影響。

  本書讓我明白了,科學是給人以知識的,而歷史是給人以智慧的。這本數(shù)學史展現(xiàn)給我們的不僅有數(shù)學的知識,更包括先人的智慧。它講述了從上古到19世紀兩千多年整個數(shù)學領(lǐng)域中主要數(shù)學概念和命題的發(fā)展,將代數(shù)、幾何、算術(shù)、三角學的發(fā)展脈絡(luò)娓娓道來,讓我們能深入了解這些概念和命題的產(chǎn)生之根和發(fā)展路徑,并進一步描述了數(shù)學思維和方法是如何逐步擺脫上古時期對天文學和實用性的依附

  作者從整個文化層面探討了小到個人的數(shù)學觀念,大到民族的數(shù)學傳統(tǒng),如何在人類文明發(fā)展的大背景下,經(jīng)過無數(shù)次的沖突與整合、淘汰與優(yōu)化,以及同其他學科的交織與融合,最終形成了整個人類輝煌的數(shù)學文明。

數(shù)學史讀書筆記3

  讀完《數(shù)學史》,心底不由得一陣感動。數(shù)學的殿堂是多么的華麗,我們這一本本厚厚的高中課本中蘊含著多少前人的探索,未來的數(shù)學史會不會因為我們的發(fā)現(xiàn)創(chuàng)造而改寫?數(shù)學,似乎是一個枯燥的學科,但是,卻是我們生活里最為有用的工具之一,它是物理化學生物的搖籃,是政治經(jīng)濟學的基礎(chǔ),是市場里的公平稱,是我們量化自己的必要工具是的,數(shù)學是一個“工具箱”!那么,前人是怎么樣把這個工具弄得更為人性化,更能讓我們好好地使用呢?看完《數(shù)學史》,我知道了許多。數(shù)學的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學與語言、藝術(shù)以及宗教一并構(gòu)成了最早的人類文明。數(shù)學是最抽象的科學,而最抽象的數(shù)學卻能催生出人類文明的絢爛的花朵。這便使數(shù)學成為人類文化中最基礎(chǔ)的工具。而在現(xiàn)代社會中,數(shù)學正在對科學和社會的發(fā)展提供著不可或缺的理論和技術(shù)支持。數(shù)學的發(fā)展決不是一帆風順的,更是一部充滿猶豫、徘徊,要經(jīng)歷艱難曲折,甚至會面臨困難和戰(zhàn)盛危機的情景劇。在數(shù)學那漫漫長河中,三次數(shù)學危機掀起的巨浪,真正體現(xiàn)了數(shù)學長河般雄壯的'氣勢。

  第一次數(shù)學危機——你知道根號2嗎?你知道平時的一塊錢兩塊糖之中是怎么迸濺出無理數(shù)的火花的嗎?正是他——希帕蘇斯,是他首先發(fā)現(xiàn)了無理數(shù),是他開始質(zhì)疑藏在有理數(shù)的背后的神奇數(shù)字。從那時起無理數(shù)成為數(shù)字大家庭中的一員,推理和證明戰(zhàn)勝了直覺和經(jīng)驗,一片廣闊的天地出現(xiàn)在眼前。但是,希帕蘇斯卻被無情地拋進了大海。不過,歷史卻絕對不會忘記他,縱然海浪早已淹沒了他的身軀,我們今天還保留著他的名字——希帕蘇斯!

  第二次數(shù)學危機——知道嗎?站在巨人的肩膀上的牛頓,曾經(jīng)站在英國大主教貝克萊的前面,用顫抖的嗓音述說者自己的觀點,沒有人相信他,沒有人支持他,即便他的觀點著實是今天的正解!數(shù)學分析被建立在實數(shù)理論的嚴格基礎(chǔ)之上,數(shù)學分析才真正成為數(shù)學發(fā)展的主流。

  第三次數(shù)學危機——我們聽過這個名字——羅素,但是緊跟在他的身后的兩個字卻是那么刺眼——“悖論”。“羅素悖論”的出現(xiàn)使數(shù)學的確定性第一次受到了挑戰(zhàn),徹底動搖了整個數(shù)學的基礎(chǔ)。與此同時,歌德爾的不完全性定理卻使希爾伯特雄心建立完善數(shù)學形式化體系、解決數(shù)學基礎(chǔ)的工作完全破滅。數(shù)學似乎是再也站不起來了。是的,羅素的觀點似乎真的很有道理,危機產(chǎn)生后,數(shù)學家紛紛提出自己的解決方案,比如zf公理系統(tǒng)。這一問題的解決到現(xiàn)在還在進行中。羅素悖論的根源在于集合論里沒有對集合的限制,以至于讓羅素能構(gòu)造一切集合的集合這樣“過大”的集合,對集合的構(gòu)造的限制至今仍然是數(shù)學界里一個巨大的難題!不過,我們不能蔑視“羅素悖論”,換種說法,不正是這個“悖論”引起了我們的思考嗎?不正是這個“悖論”使我們更有創(chuàng)造精神嗎?前文一直是外國的事件,但是,我們中國在數(shù)學上的成就也絕對不能忽視,從《九章算術(shù)》到《周髀算經(jīng)》,中國傳統(tǒng)數(shù)學源遠流長,有其自身特有的思想體系與發(fā)展途徑。

  數(shù)學是一門歷史性或者說累積性很強的科學。重大的數(shù)學理論總是在繼承和發(fā)展原有理論的基礎(chǔ)上建立起來的,它們不僅不會推翻原有的理論,而且總是包容原先的理論。例如,數(shù)的理論演進就表現(xiàn)出明顯的累積性;在幾何學中,非歐幾何可以看成是歐氏幾何的拓廣;溯源于初等代數(shù)的抽象代數(shù)并沒有使前者被淘汰;同樣現(xiàn)代分析中諸如函數(shù)、導數(shù)、積分等概念的推廣均包含樂古典定義作為特例?梢哉f,在數(shù)學的漫長進化過程中,幾乎沒有發(fā)生過徹底推翻前人建筑的情況。正是我們不斷地為數(shù)學這座高樓添磚加瓦,她才能越立越高,越立越扎實!

數(shù)學史讀書筆記4

  大致地瀏覽完《數(shù)學史》,心底不由得一陣感動,油然而生一種敬佩之意。那是一種什么感覺呢?是一種對數(shù)學有著宗教般虔誠的仰望者的心動,是一個對歷史有著無盡探索欲望的追求者的向往。不禁感嘆數(shù)學海洋的浩瀚無邊,不禁感嘆列祖先輩們的無限潛力與智慧,不禁感嘆那種只有人類才有的堅定與執(zhí)著的難能可貴。

  書中所說到的東西,真的是很令我震撼的。更何況我只是粗略的看了一下,還沒有很仔細、很認真地思考過。更別提我會深入地研究了。若是那樣,真怕自己會在這么碩大的海洋里,迷失方向呢。一想到說,數(shù)學的歷史與文化如此之久遠,數(shù)學的知識與涉足如此之深廣,數(shù)學的應用更是無處不在。真的發(fā)現(xiàn)自己所知道的,只是冰山一角;自己只領(lǐng)會了海邊的的一灘水,原來還有一整片海需要我去探索與學習。這就是知識的魅力!這就是探索者的精神的渲染!

  通過這本書,我對數(shù)學發(fā)展的概況有了一個較為全面的了解。書中通過生動具體的事例,介紹了數(shù)學發(fā)展過程中的若干重要事件、重要人物與重要成果,讓我初步了解了數(shù)學這門科學產(chǎn)生與發(fā)展的歷史過程,體會了數(shù)學對人類文明發(fā)展的作用,感受到了數(shù)學家嚴謹?shù)闹螌W態(tài)度和鍥而不舍的探索精神。

數(shù)學史讀書筆記5

  法國在十九世紀一直是最活躍的數(shù)學中心之一,涌現(xiàn)出一批優(yōu)秀人才,如傅里葉、泊松、彭賽列、柯西、劉維爾、伽羅華、埃爾米特、若爾當、達布、龐加萊、阿達馬。他們在幾乎所有的數(shù)學分支中都作出了卓越貢獻。法國革命的影響波及歐洲各國,使整個學術(shù)界思想十分活躍,突破了一切禁區(qū)。復分析真正作為現(xiàn)代分析的一個研究領(lǐng)域,是在19世紀建立起來的,主要奠基人是柯西、黎曼和魏爾斯特拉斯,三者的出發(fā)點和探索方法有所不同,但卻可以說是殊途同歸。把分析建立在“純粹算術(shù)”的基礎(chǔ)之上,這方面的努力在19世紀后半葉釀成了數(shù)學史上著名的“分析算術(shù)化”運動,這場運動的主將是魏爾斯特拉斯。魏爾斯特拉斯認為實數(shù)賦予我們極限與連續(xù)等概念,從而成為全部分析的本源。要使分析嚴格化,首先就要使實數(shù)系本身嚴格化。為此最可靠的辦法是按照嚴密的推理將實數(shù)歸結(jié)為整數(shù)(有理數(shù))。這樣,分析的所有概念便可由整數(shù)導出,使以往的漏洞和缺陷都能得以填補。這就是所謂“分析算術(shù)化”綱領(lǐng),魏爾斯特拉斯本人和他的學生們?yōu)閷崿F(xiàn)這一綱領(lǐng)作出了艱苦的努力并獲得了很大成功。魏爾斯特拉斯的工作一向以嚴格著稱,他關(guān)于解析函數(shù)的工作也是以追求絕對的嚴格性為特征的因此,魏爾斯特拉斯不僅拒絕使用柯西通過復積分所獲得的結(jié)果(包括柯西積分定理和留數(shù)理論),他也不能接受黎曼提出的那種幾何“超驗”方法。他相信函數(shù)論的原理必須建立在代數(shù)真理的基礎(chǔ)上,所以他把目光投向了冪級數(shù)。用冪級數(shù)表示已用解析形式給出的復函數(shù),對于魏爾斯特拉斯來說并不是一個新的創(chuàng)造。但是,從已知的一個在限定區(qū)域內(nèi)定義某個函數(shù)的冪級數(shù)出發(fā),根據(jù)冪級數(shù)的有關(guān)定理,推導出在其他區(qū)域中定義同一函數(shù)的另一些冪級數(shù),這個問題是魏爾斯特拉斯解決的上述過程也稱為解析開拓,它在魏爾斯特拉斯的理論中起著基本的作用。使用這種方法,已知某個解析函數(shù)在一點處的冪級數(shù),通過解析開拓,我們就可以完全得到這個解析函數(shù)。在19世紀末,魏爾斯特拉斯的方法占據(jù)了主導地位,正是這種影響,使得“函數(shù)論”成為復變函數(shù)論的同義詞。但是后來柯西和黎曼的思想被融合在一起,其嚴密性也得到了改進,而魏爾斯特拉斯的思想還逐漸從柯西—黎曼觀點推導出來。這樣,上述三種傳統(tǒng)便得到了統(tǒng)一。魏爾斯特拉斯在這一時期繼續(xù)分析算術(shù)化的工作,提出了現(xiàn)代通用的極限定義,即用靜態(tài)的方法(不等式)刻畫變化過程。他構(gòu)造出處處不可微的連續(xù)函數(shù)實例,告誡人們必須精細地處理分析學的對象,對實變函數(shù)論的興起起了催化作用。在復變函數(shù)論方面,他提出了基于冪級數(shù)的解析開拓理論。魏爾斯特拉斯的眾多成果出自他任中學教員的時期,到1859年出任柏林大學教師后才廣為人知。由于他為分析奠

  基的出色成就,后被譽為“現(xiàn)代分析之父”不過,1872年,戴德金、康托爾、梅雷和海涅等人幾乎同時發(fā)表了他們各自的實數(shù)理論,而其中戴德金和康托爾的實數(shù)構(gòu)造方法正是我們現(xiàn)在通常所采用的這表明,由實數(shù)構(gòu)成的基本序列不會產(chǎn)生任何更新類型的數(shù),或者說由實數(shù)構(gòu)成的基本序列不需要任何更新類型的數(shù)來充當它的極限,因為已經(jīng)存在的實數(shù)已足夠提供其極限了。因此,從為基本序列提供極限的觀點來說,實數(shù)系是一個完備系。這樣,長期以來圍繞著實數(shù)概念的邏輯循環(huán)得以徹底消除。實數(shù)的定義及其完備性的確立,標志著由魏爾斯特拉斯倡導的分析算術(shù)化運動大致宣告完成。

【數(shù)學史讀書筆記】相關(guān)文章:

中國數(shù)學史讀書筆記11-04

數(shù)學史的教育價值與具體應用11-10

關(guān)于數(shù)學史畢業(yè)論文06-17

新課程數(shù)學數(shù)學史論文10-29

關(guān)于數(shù)學史數(shù)學的探析論文07-27

數(shù)學教材中的數(shù)學史研究08-06

小學數(shù)學教材數(shù)學史料探究論文10-30

數(shù)學史在高等數(shù)學教學的運用06-17

淺談數(shù)學史在概念教學中的滲透06-17