久久九九国产无码高清_人人做人人澡人人人爽_日本一区二区三区中文字幕_日韩无码性爱免费

數(shù)學(xué)建模論文

時(shí)間:2023-07-21 15:14:45 數(shù)學(xué)畢業(yè)論文 我要投稿

數(shù)學(xué)建模論文模板15篇[通用]

  在個(gè)人成長(zhǎng)的多個(gè)環(huán)節(jié)中,大家都有寫論文的經(jīng)歷,對(duì)論文很是熟悉吧,論文是學(xué)術(shù)界進(jìn)行成果交流的工具。相信寫論文是一個(gè)讓許多人都頭痛的問(wèn)題,下面是小編為大家整理的數(shù)學(xué)建模論文模板,歡迎大家分享。

數(shù)學(xué)建模論文模板15篇[通用]

數(shù)學(xué)建模論文模板1

  在小學(xué)數(shù)學(xué)教學(xué)中恰當(dāng)?shù)剡\(yùn)用數(shù)學(xué)模型方法,揭示數(shù)學(xué)的本質(zhì),在接替過(guò)程中引發(fā)與選擇思維方向,都具有很大的啟發(fā)性。所以我們應(yīng)當(dāng)在教學(xué)中幫助學(xué)生逐步建構(gòu)模型、應(yīng)用模型,就是要求教師致力于數(shù)學(xué)建模的引領(lǐng),讓學(xué)生體驗(yàn)數(shù)學(xué)建模的過(guò)程,從而取得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。它是把“創(chuàng)造過(guò)程中的數(shù)學(xué)”納入數(shù)學(xué)教育的一種可行手段。

  正如弗賴登塔爾所認(rèn)為的:“學(xué)生自己發(fā)明數(shù)學(xué)就會(huì)學(xué)得更好”,“讓他們經(jīng)歷數(shù)學(xué)化的過(guò)程,這是教學(xué)的第一原則”。

  一、建模的策略

  1、精選問(wèn)題,創(chuàng)設(shè)情境,激發(fā)建模的興趣。

  數(shù)學(xué)模型都是具有現(xiàn)實(shí)的生活背景的,這是構(gòu)建模型的基礎(chǔ)和解決實(shí)際問(wèn)題的需要。如構(gòu)建“平均數(shù)”模型時(shí),可以創(chuàng)設(shè)這樣的情境:4名男生一組,5名女生一組,進(jìn)行套圈游戲比賽,哪個(gè)組的套圈水平高一些?學(xué)生提出了一些解決的方法,如比較每組的總分、比較每組中的最好成績(jī)等,但都遭到了否決。這時(shí)“平均數(shù)”的策略應(yīng)需而生,構(gòu)建“平均數(shù)”的模型成為了學(xué)生的需求,同時(shí)也揭示了模型存在的背景、適用環(huán)境、條件等。

  2、充分感知,積累表象,培育建模的基礎(chǔ)。

  數(shù)學(xué)模型關(guān)注的對(duì)象是許多具有共同普遍性的一類事物,因此教師首先要給學(xué)生提供豐富的感性材料,多側(cè)面、多維度、全方位感知這類事物的特征或數(shù)量相依關(guān)系,為數(shù)學(xué)模型的準(zhǔn)確構(gòu)建提供可能。如一年級(jí)“湊十法”模型構(gòu)建的過(guò)程就是一個(gè)不斷感知、積累的.過(guò)程。首先通過(guò)探究學(xué)習(xí)9加幾的算法,初步了解湊十法;接著采取半扶半放的方式學(xué)習(xí)“8、7加幾”的算法,進(jìn)一步感知湊十法更廣的適用范圍;最后,學(xué)習(xí)6、5、4加幾,運(yùn)用湊十法靈活解決相關(guān)計(jì)算問(wèn)題。學(xué)生經(jīng)歷了觀察、操作、實(shí)踐、討論,體驗(yàn)到了“湊十法”的內(nèi)涵,為形成“湊十法”的模型奠定了堅(jiān)實(shí)的基礎(chǔ),提供了充分的準(zhǔn)備。

  3、組織躍進(jìn),抽象本質(zhì),完成模型的構(gòu)建。

  實(shí)現(xiàn)通過(guò)生活向抽象數(shù)學(xué)模型的有效過(guò)渡,是數(shù)學(xué)教學(xué)的任務(wù)之一。具體生動(dòng)的情境問(wèn)題只是為學(xué)生數(shù)學(xué)模型的建構(gòu)提供了可能,如果忽視從具體到抽象的躍進(jìn)過(guò)程的有效組織,那就不成其為建模。如四年級(jí)上冊(cè)“平行與相交”,如果只是讓學(xué)生感知火車鐵軌、跑道線、雙杠、五線譜等具體的素材,而沒(méi)有透過(guò)現(xiàn)象看本質(zhì)的過(guò)程,當(dāng)學(xué)生提取“平行線”的模型時(shí),呈現(xiàn)出來(lái)的一定是形態(tài)各異的具體事物,而不是具有一般意義的數(shù)學(xué)模型。而“平行”的數(shù)學(xué)本質(zhì)是“同一平面內(nèi)兩條直線間距離保持不變”,教師應(yīng)將學(xué)生關(guān)注的目標(biāo)從具體上升為兩條直線及直線間的寬度(距離)?梢宰寣W(xué)生通過(guò)如下活動(dòng)來(lái)組織躍進(jìn)過(guò)程:

 。1)提出問(wèn)題:為什么兩條直線永遠(yuǎn)不相交呢?

 。2)動(dòng)手實(shí)驗(yàn)思考:在兩條平行線間作垂線。量一量這些垂線的長(zhǎng)度,你發(fā)現(xiàn)了什么?你知道工人師傅是通過(guò)什么辦法使兩條鐵軌始終保持平行的嗎?

  經(jīng)歷這樣的學(xué)習(xí)過(guò)程,學(xué)生對(duì)平行的理解必定走向半具體半抽象的模型,從而構(gòu)建起真正的數(shù)學(xué)認(rèn)識(shí)。在這一過(guò)程的組織中,教師要引導(dǎo)學(xué)生通過(guò)比較、分析、綜合、歸納、操作等思維活動(dòng),將本質(zhì)屬性抽取出來(lái),構(gòu)成研究對(duì)象本質(zhì)的關(guān)鍵特征,使平行線完成從物理模型到直觀的數(shù)學(xué)模型,再到抽象的數(shù)學(xué)模型的建構(gòu)過(guò)程。

  4、重視思想,提煉方法,優(yōu)化建模的過(guò)程。

  不管是數(shù)學(xué)概念的建立、數(shù)學(xué)規(guī)律的發(fā)現(xiàn)還是數(shù)學(xué)問(wèn)題的解決,核心問(wèn)題都在于數(shù)學(xué)思維方法的建立,它是數(shù)學(xué)模型存在的靈魂。如《圓柱的體積》教學(xué),在建構(gòu)體積公式這一模型的過(guò)程中要突出與之相伴的“數(shù)學(xué)思想方法”的建模過(guò)程。一是轉(zhuǎn)化,這與以前的學(xué)習(xí)經(jīng)驗(yàn)相一致,是將未知轉(zhuǎn)化成已知;二是極限思想,這與把一個(gè)圓形轉(zhuǎn)化為一個(gè)長(zhǎng)方形類似,是在眾多表面上形態(tài)各異的思維策略背后蘊(yùn)藏的共同的具有更高概括意義的數(shù)學(xué)思想方法。重視數(shù)學(xué)思想方法的提煉與體驗(yàn),可以催化數(shù)學(xué)模型的建構(gòu),提升建構(gòu)的理性高度。 5、回歸生活,變換情境,拓展模型的外延。

  人的認(rèn)識(shí)過(guò)程是由感性到理性再到感性循環(huán)往復(fù)、螺旋上升的過(guò)程。從具體的問(wèn)題經(jīng)歷抽象提煉初步構(gòu)建起相應(yīng)的數(shù)學(xué)模型,并不是學(xué)生認(rèn)識(shí)的終結(jié),還要組織學(xué)生將數(shù)學(xué)模型還原為具體的數(shù)學(xué)直觀或可感的數(shù)學(xué)現(xiàn)實(shí),使已經(jīng)構(gòu)建的數(shù)學(xué)模型不斷得以擴(kuò)充和提升。如初步建立起來(lái)的“雞兔同籠”問(wèn)題模型,它是通過(guò)“雞”、“兔”來(lái)研究問(wèn)題、解決問(wèn)題從而建立起來(lái)的。但建立模型的過(guò)程中不可能將所有的同類事物列舉窮盡,教師要帶領(lǐng)學(xué)生繼續(xù)擴(kuò)展考察的范圍,分析當(dāng)情境數(shù)據(jù)變化時(shí)所得模型是否穩(wěn)定。可以出示如下問(wèn)題讓學(xué)生分析:

  9張桌子共26人,正在進(jìn)行乒乓球單打、雙打比賽,單打、雙打的各幾張桌子?”“甲、乙兩個(gè)車間共126人,如果從甲車間每8人中選一名代表,從乙車間每6人中選一名代表,正好選出17名代表。甲、乙兩車間各有多少人?”……這樣,便可使模型不斷得以豐富和拓展。

  二、拓寬建模的途徑

  開展數(shù)學(xué)建;顒(dòng),關(guān)注的是建模的過(guò)程而不僅僅是結(jié)果,更多的是培養(yǎng)思維能力,特別是創(chuàng)造能力。因此,在小學(xué)數(shù)學(xué)教學(xué)中要轉(zhuǎn)變觀念,革新課堂教學(xué)模式,以“建!钡囊暯莵(lái)處理教學(xué)內(nèi)容。

  1、根據(jù)教學(xué)內(nèi)容,開展建;顒(dòng)。

  教材中的一些內(nèi)容已經(jīng)考慮按照建模的思路編排,教師要多從建模的角度解讀教材,充分挖掘教材中蘊(yùn)含的建模思想,精心設(shè)計(jì)和選擇列入教學(xué)內(nèi)容的現(xiàn)實(shí)問(wèn)題情境,使學(xué)生從中獲得“搜集信息,將實(shí)際問(wèn)題數(shù)學(xué)化,建立模型,解答問(wèn)題,從而解決問(wèn)題”的體驗(yàn)。

  2、上好實(shí)踐活動(dòng)課,為學(xué)生模仿建模甚至獨(dú)立建模提供有效指導(dǎo)。

  重點(diǎn)應(yīng)放在對(duì)問(wèn)題背景、問(wèn)題條件的考察以及模型建立過(guò)程的引導(dǎo)與分析上,力圖使學(xué)生弄清其中所蘊(yùn)涵的思維方式與方法?梢越Y(jié)合教材內(nèi)容,適當(dāng)對(duì)各種知識(shí)點(diǎn)進(jìn)行整合,并使之融進(jìn)生活背景,生產(chǎn)出好的“建模問(wèn)題”作為實(shí)踐活動(dòng)課的內(nèi)容。如蘇教版六(上)安排了這樣的問(wèn)題:找10盒火柴,先在小組里拼一拼,看看把10盒火柴包裝成一包有哪些不同的方法、怎樣包裝最節(jié)省包裝紙。

  3、改編教材習(xí)題,放大功能,使建模教學(xué)成為一種自覺(jué)行為。

  教材上許多應(yīng)用題已不是實(shí)際問(wèn)題的原形,可以根據(jù)需要對(duì)一些題目進(jìn)行開發(fā),使其成為建模的有效素材。如將教材“從一點(diǎn)畫一條已知直線的垂線”的內(nèi)容改成:“從某村莊修一條到河邊的小路,怎樣最近?”再如教材中“正方形面積是8平方厘米,求其內(nèi)接圓的面積”,如果只是一做了事,那么它的價(jià)值就不能完全體現(xiàn)出來(lái)。可以利用它開展建;顒(dòng):可以設(shè)圓的半徑是r,探討出圓的面積與正方形面積之間的關(guān)系:πr2/4r2=π/4,從而建立起關(guān)系模型,進(jìn)而解決問(wèn)題;也可以另辟蹊徑,先通過(guò)“圓內(nèi)接正方形面積是6平方厘米,求圓的面積”這一問(wèn)題的解決,建立模型,圓的面積是正方形面積的 倍。再將原問(wèn)題進(jìn)行轉(zhuǎn)化,從而獲得解決。

  學(xué)生學(xué)習(xí)數(shù)學(xué)模型的方法需要經(jīng)歷一個(gè)長(zhǎng)期的、不斷積累經(jīng)驗(yàn)、不斷深化的過(guò)程,需要教師在教學(xué)的實(shí)踐中結(jié)合數(shù)學(xué)知識(shí)的教學(xué)反復(fù)孕育,讓學(xué)生親身經(jīng)歷建模過(guò)程。

數(shù)學(xué)建模論文模板2

  一、問(wèn)題教學(xué)法的教學(xué)模式

  問(wèn)題教學(xué)法是一種新的教學(xué)模式,與傳統(tǒng)教學(xué)有很大的區(qū)別。在傳統(tǒng)的教學(xué)中,教師考慮最多的是“教什么、怎樣教”的問(wèn)題,很少顧及學(xué)生“學(xué)什么、怎樣學(xué)”,限制了學(xué)生學(xué)習(xí)的主動(dòng)性和創(chuàng)造性。[1]為了改變這種現(xiàn)狀,美國(guó)神經(jīng)病學(xué)教授HowardBarrows于1969年創(chuàng)立了基于問(wèn)題和項(xiàng)目的學(xué)習(xí)(ProblemBasedLearning)理念教學(xué)法。[2]這種方法不像傳統(tǒng)教學(xué)模式那樣先學(xué)習(xí)理論知識(shí)再解決問(wèn)題,而是讓學(xué)生圍繞問(wèn)題尋求解決方案。它強(qiáng)調(diào)讓學(xué)生置身于復(fù)雜的、有意義的問(wèn)題情境中,并讓學(xué)生成為該問(wèn)題情境的主體,自己去分析問(wèn)題,學(xué)習(xí)解決該問(wèn)題所需的知識(shí),進(jìn)而通過(guò)合作解決問(wèn)題。此外,教師在該過(guò)程中也可以通過(guò)提問(wèn)的方式,不斷地激發(fā)學(xué)生去思考、探索,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。與傳統(tǒng)的教學(xué)模式相比,問(wèn)題教學(xué)模式更注重對(duì)學(xué)生自學(xué)能力、創(chuàng)新能力、發(fā)現(xiàn)問(wèn)題和解決問(wèn)題能力的培養(yǎng)。問(wèn)題教學(xué)模式剛開始主要被應(yīng)用于醫(yī)學(xué)、市場(chǎng)營(yíng)銷、實(shí)驗(yàn)教學(xué)、畢業(yè)論文的寫作等領(lǐng)域。[3]近年來(lái),一些學(xué)者開始探索將這種教學(xué)模式引入到“數(shù)學(xué)建!闭n程的教學(xué)中。黃河科技學(xué)院從20xx級(jí)信息與計(jì)算科學(xué)專業(yè)的學(xué)生開始,在“數(shù)學(xué)建!苯虒W(xué)活動(dòng)引入問(wèn)題教學(xué)模式,已經(jīng)取得了初步的成效。

  二、基于問(wèn)題教學(xué)法的實(shí)施步驟

  1.教師提出問(wèn)題

  教師在每次上課之前要精心設(shè)計(jì)適合學(xué)生自學(xué)的問(wèn)題體系,目的是為了誘導(dǎo)學(xué)生的思維,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生置身于特定的問(wèn)題環(huán)境中,營(yíng)造一種質(zhì)疑、探究、討論、和諧互動(dòng)的學(xué)習(xí)氛圍。這一步驟要求教師不僅需要熟悉教學(xué)內(nèi)容,還必須更好地了解學(xué)生的實(shí)際情況,這是成功實(shí)施問(wèn)題教學(xué)模式的基礎(chǔ)。

  2.積極分析問(wèn)題

  問(wèn)題教學(xué)法的基本特點(diǎn)是教學(xué)環(huán)節(jié)由一連串問(wèn)題組成,并且問(wèn)題與問(wèn)題之間的聯(lián)系具有鏈接性和層次性。前一個(gè)問(wèn)題是后一個(gè)問(wèn)題的鋪墊,后一個(gè)問(wèn)題又是前一個(gè)問(wèn)題的深化和拓展。在學(xué)生熟悉了相關(guān)知識(shí)的基礎(chǔ)上,根據(jù)給出的實(shí)際問(wèn)題,教師引導(dǎo)學(xué)生進(jìn)行探索。探索活動(dòng)一般包括自學(xué)教材、觀察實(shí)驗(yàn)、小組討論等方式。學(xué)生一方面要充分利用原有認(rèn)知結(jié)構(gòu)中存儲(chǔ)的`有關(guān)知識(shí)信息,另一方面可以利用教材、實(shí)驗(yàn)或教師提供的閱讀材料,獲取解決問(wèn)題的方法。在對(duì)問(wèn)題討論中教師要?jiǎng)?chuàng)設(shè)和諧民主的教學(xué)環(huán)境,要讓學(xué)生充分發(fā)表自己的見(jiàn)解,大膽質(zhì)疑,相互答辯,相互啟發(fā)。

  3.解決問(wèn)題

  當(dāng)所有學(xué)生都對(duì)問(wèn)題的解決方案有了一定的思路之后,教師組織課堂發(fā)言。讓每一小組推薦一位表達(dá)能力強(qiáng)的學(xué)生,在課堂上把他們對(duì)解決問(wèn)題的方法及結(jié)論的合理性進(jìn)行講解。在每組講解完之后,其他學(xué)生可以對(duì)他們進(jìn)行提問(wèn),而發(fā)言小組的學(xué)生要向其他同學(xué)和老師進(jìn)行解釋。教師在主持和引導(dǎo)的同時(shí),也可以向?qū)W生提問(wèn)。這樣通過(guò)對(duì)一個(gè)又一個(gè)問(wèn)題的提問(wèn),推動(dòng)學(xué)生思考,將問(wèn)題引向縱深層次,一步步朝著解決問(wèn)題的方向發(fā)展。

  4.對(duì)問(wèn)題的結(jié)果進(jìn)行評(píng)價(jià)

  問(wèn)題教學(xué)法不僅以問(wèn)題為開端,還以問(wèn)題為終結(jié)。教學(xué)的最終結(jié)果不是傳授知識(shí)來(lái)消滅問(wèn)題,而是在解決已有問(wèn)題的基礎(chǔ)上引發(fā)更多、更廣泛的問(wèn)題。因此教師在對(duì)問(wèn)題的結(jié)果進(jìn)行總結(jié)時(shí)要注意引導(dǎo)學(xué)生反思“這個(gè)問(wèn)題為什么要這樣解決”,“這個(gè)問(wèn)題還可以怎樣解決”,“從解決這個(gè)問(wèn)題中我學(xué)到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發(fā)他們提出新的問(wèn)題,這是問(wèn)題教學(xué)中最重要、最有教益的一個(gè)方面。

  三、基于問(wèn)題教學(xué)法的實(shí)施案例

  在基于問(wèn)題教學(xué)的過(guò)程中,每次討論的問(wèn)題都圍繞某一專題進(jìn)行討論學(xué)習(xí),下面以“公平的席位分配問(wèn)題”[4]為例,說(shuō)明在“數(shù)學(xué)建!敝腥绾芜\(yùn)用問(wèn)題教學(xué)法。

  1.合理設(shè)計(jì)問(wèn)題

  獎(jiǎng)學(xué)金評(píng)定是學(xué)生比較關(guān)心的問(wèn)題,筆者根據(jù)學(xué)生的興趣及認(rèn)知水平選擇“獎(jiǎng)學(xué)金名額分配問(wèn)題”。設(shè)某校有5個(gè)系A(chǔ)、B、C、D、E,各系學(xué)生數(shù)分別為345、72、894、68、39,現(xiàn)在有74個(gè)獎(jiǎng)學(xué)金名額,問(wèn)每個(gè)系分配幾個(gè)名額比較公平?[5]在給出問(wèn)題后,我們將相關(guān)問(wèn)題印發(fā)給學(xué)生,并讓學(xué)生課下先收集關(guān)于“公平的席位分配問(wèn)題”的模型及相關(guān)求解方法并認(rèn)真研讀。

  2.小組討論分析問(wèn)題

  根據(jù)課下學(xué)生收集的求解方案,上課時(shí)首先以小組為單位初步討論。首先提出如果讓同學(xué)們進(jìn)行分配的話,他們會(huì)使用什么方法進(jìn)行分配,讓他們進(jìn)行討論。學(xué)生首先會(huì)給出比例分配方案,如果按人數(shù)比例分配到各系的名額恰好都是整數(shù),可以得到完全公平的分配方案。但在很多情況下,按人數(shù)比例分配到各系的名額帶有小數(shù)。比如在這個(gè)問(wèn)題中各系分配的名額數(shù)分別為:18.00、3.76、46.65、3.55、2.04,有小數(shù)部分。可以先把整數(shù)分配完,這時(shí)各系分配的名額數(shù)為:18、3、46、3、2。共分配了72名額,還有2個(gè)名額該如何分配?大家經(jīng)過(guò)討論,會(huì)提出誰(shuí)的小數(shù)部分大就把名額給誰(shuí)的分配方案,于是第73個(gè)名額給B系,第74個(gè)名額給C系。最終的方案是各系名額數(shù)分別為:18、4、47、3、2。接著老師會(huì)提出下面的問(wèn)題,這種分配方案對(duì)誰(shuí)最不公平?學(xué)生會(huì)進(jìn)一步討論每個(gè)名額代表的人數(shù),A為19.17人,B為18人,C為19.02人,D為22.67人,E為19.5人,說(shuō)明這種分配方案對(duì)D系最不公平,而B系最占便宜,兩個(gè)系中每個(gè)名額代表的人數(shù)相差了4.67人。那么要重點(diǎn)討論有沒(méi)有相對(duì)來(lái)說(shuō)比較公平的席位分配方案。

  3.學(xué)生進(jìn)行發(fā)言討論

  在所有小組都討論完之后,教師組織各組學(xué)生進(jìn)行課堂發(fā)言和討論,讓每組選一人報(bào)告本小組討論結(jié)果。教師對(duì)各組的報(bào)告進(jìn)行評(píng)價(jià),指出在討論過(guò)程中的問(wèn)題及不足之處。在這個(gè)問(wèn)題中,學(xué)生根據(jù)課下收集的文獻(xiàn)資料會(huì)逐步提出Q值分配方案,Q值分配方案的改進(jìn),Q值+D’Hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進(jìn),最后我們提出問(wèn)題,這些分配方案公平度如何?讓學(xué)生逐一討論,從而營(yíng)造出一個(gè)討論主題鮮明、學(xué)習(xí)氛圍良好的課堂環(huán)境。

  4.教師對(duì)結(jié)果進(jìn)行評(píng)價(jià)總結(jié)

  在這個(gè)問(wèn)題中,經(jīng)過(guò)逐一討論,大部分學(xué)生認(rèn)為問(wèn)題已經(jīng)圓滿解決了,不會(huì)再對(duì)結(jié)果進(jìn)行歸納整理,不會(huì)反思問(wèn)題解決的思路。因此在最初的問(wèn)題解決后,老師要引導(dǎo)學(xué)生進(jìn)行評(píng)價(jià)總結(jié),比如:“各個(gè)方案的公平度如何”,“我們還有沒(méi)有更公平的分配方案”,“公平的席位分配方案應(yīng)滿足什么原則”等等。

  四、結(jié)論

  從“公平的席位分配問(wèn)題”這個(gè)案例可以看到,在教學(xué)中為學(xué)生設(shè)計(jì)一個(gè)真實(shí)的問(wèn)題進(jìn)行教學(xué),學(xué)生可以通過(guò)真實(shí)問(wèn)題進(jìn)行學(xué)習(xí),并且以一個(gè)真實(shí)問(wèn)題的解決為主線,激發(fā)學(xué)生的學(xué)習(xí)興趣和探索精神,再通過(guò)結(jié)果反饋信息,引導(dǎo)學(xué)生逐步深入理解學(xué)習(xí)內(nèi)容。學(xué)生在研究問(wèn)題的過(guò)程中不僅學(xué)習(xí)了課本上的知識(shí),而且還親身體會(huì)了解決實(shí)際問(wèn)題的樂(lè)趣,為學(xué)生以后自主學(xué)習(xí)提供了極大的幫助。[6]四、結(jié)語(yǔ)當(dāng)然,在“數(shù)學(xué)建模”課程的教學(xué)過(guò)程中問(wèn)題教學(xué)模式也存在不足之處,比如課程內(nèi)容多、課時(shí)少,問(wèn)題討論時(shí)間和講授時(shí)間出現(xiàn)矛盾,對(duì)有的專題討論不夠深入,學(xué)生參與度不夠,學(xué)生發(fā)言的深度和廣度都有待于進(jìn)一步提高等等。這需要教師認(rèn)真歸納講課內(nèi)容,盡量分離出較多比較有吸引力的專題供學(xué)生討論,以問(wèn)題為中心規(guī)劃教學(xué)內(nèi)容,讓學(xué)生圍繞問(wèn)題尋求解決方案,從而提高學(xué)生學(xué)習(xí)的主動(dòng)性,提高學(xué)生在教學(xué)過(guò)程中的參與程度,激發(fā)學(xué)生的求知欲!皵(shù)學(xué)建!闭n程教學(xué)的本身就是一個(gè)不斷探索、創(chuàng)新和提高的過(guò)程,選擇正確有效的教學(xué)方法能更好培養(yǎng)學(xué)生的創(chuàng)新能力,激發(fā)學(xué)生對(duì)數(shù)學(xué)建模的興趣。

數(shù)學(xué)建模論文模板3

  一、高等數(shù)學(xué)課程的重要性

  學(xué)好高等數(shù)學(xué)課程,不僅可以學(xué)到像數(shù)學(xué)概念、公式、定理結(jié)論這樣的理論知識(shí),并在定理、公式的推導(dǎo)過(guò)程中更能培養(yǎng)人的邏輯思維能力,提高數(shù)學(xué)素養(yǎng),同時(shí)是學(xué)好后續(xù)專業(yè)課程例如西方經(jīng)濟(jì)學(xué)等學(xué)科有力保障。高等數(shù)學(xué)課程更重要的作用是培養(yǎng)學(xué)生的理性思維和思辨能力;能啟迪智慧,開發(fā)創(chuàng)新、創(chuàng)造能力。因而高等數(shù)學(xué)課程授課效果的好壞直接影響到金融類院校人才的培養(yǎng)質(zhì)量的高低。在這種形勢(shì)下,全國(guó)金融類院校都開設(shè)了高等數(shù)學(xué)課程。

  二、高等數(shù)學(xué)課程授課現(xiàn)狀

  每一個(gè)講授高等數(shù)學(xué)課程的教師在第一次上課時(shí),幾乎都會(huì)對(duì)學(xué)生闡述這門課程的重要性。一方面會(huì)強(qiáng)調(diào)這門課程的理論基礎(chǔ)知識(shí)的重要性,另一方面強(qiáng)調(diào)它在解決實(shí)際問(wèn)題中的應(yīng)用性等等。大多數(shù)學(xué)生更感興趣的這門課程在實(shí)際中的應(yīng)用,但是在實(shí)際教學(xué)過(guò)程中,教師卻很難將理論知識(shí)應(yīng)用到實(shí)際去解決一些實(shí)際問(wèn)題,理論和實(shí)際嚴(yán)重脫節(jié),長(zhǎng)期以來(lái),現(xiàn)在高校普遍的高等數(shù)學(xué)教學(xué)教學(xué),為了完成教學(xué)任務(wù)而“滿堂灌”的現(xiàn)象仍舊是普遍存在的,不講究教學(xué)方法,不能做到因材施教,教師授課沒(méi)有熱情,平鋪直敘,照本宣科,授課過(guò)程枯燥無(wú)味,課堂氣氛死氣沉沉,幾乎沒(méi)有互動(dòng)。采用的教學(xué)手段依然是粉筆加黑板、課本加教案的傳統(tǒng)授課模式,現(xiàn)代化的多媒體教學(xué)手段應(yīng)用幾乎為零。多種原因都有可能導(dǎo)致學(xué)生對(duì)高等數(shù)學(xué)產(chǎn)生抵觸情緒、畏難情緒,失去學(xué)習(xí)這門課程的興趣。因此要改變目前高等數(shù)學(xué)課程的學(xué)習(xí)現(xiàn)狀,高等數(shù)學(xué)的教學(xué)改革已經(jīng)勢(shì)在必行,刻不容緩。實(shí)踐證明,如果教師能在講授重點(diǎn)、難點(diǎn)知識(shí)時(shí),引入適當(dāng)?shù)臄?shù)學(xué)建模案例,不但易于學(xué)生對(duì)理論知識(shí)的理解,更能增強(qiáng)學(xué)生運(yùn)用學(xué)到的理論解決實(shí)際問(wèn)題的能力。從而可以糾正一些學(xué)生認(rèn)為的“高數(shù)數(shù)學(xué)無(wú)用論“的思想,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情、興趣,培養(yǎng)學(xué)生的創(chuàng)新力、創(chuàng)造力,提高學(xué)生的數(shù)學(xué)素養(yǎng)與綜合素質(zhì)。

  三、數(shù)學(xué)建模在高等數(shù)學(xué)教學(xué)中的重要性

  課程的著重點(diǎn)為挖掘和展現(xiàn)數(shù)學(xué)理論知識(shí)中的數(shù)學(xué)思維方法及將理論應(yīng)用到實(shí)踐。在授課過(guò)程中,要求教師對(duì)重要概念、定義,要能講清背景來(lái)源,以及它們所體現(xiàn)出的數(shù)學(xué)思想方法。對(duì)教材上的重點(diǎn)例題、典型習(xí)題的分析要體現(xiàn)數(shù)學(xué)思維過(guò)程,分析出難點(diǎn)、關(guān)鍵點(diǎn),新知識(shí)如何在題目中應(yīng)用的,這樣才能有助于學(xué)生對(duì)新知識(shí)的理解和運(yùn)用。課堂上,采用啟發(fā)式教學(xué),使學(xué)生能對(duì)教師所授新知識(shí)能進(jìn)行分析、總結(jié)、整理,進(jìn)而能培養(yǎng)學(xué)生提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。從而一方面為后繼專業(yè)課程的學(xué)習(xí)奠定必要的理論基礎(chǔ),另一方面使學(xué)生初步擁有運(yùn)用數(shù)學(xué)理論知識(shí)解決實(shí)際問(wèn)題的能力。進(jìn)而培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、縝密的科學(xué)態(tài)度,逐步提高提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。

  1.有利于學(xué)生對(duì)概念的理解與掌握

  高等數(shù)學(xué)中的概念與初等數(shù)學(xué)相比則更抽象,如極限的精確定義、導(dǎo)數(shù)、定積分等,學(xué)生在學(xué)習(xí)這些概念時(shí)總想知道這些概念的來(lái)源和應(yīng)用,希望在實(shí)際問(wèn)題中找到概念的原型。事實(shí)上,數(shù)學(xué)中的概念本身就是從客觀事物的數(shù)量關(guān)系中抽象出來(lái)的數(shù)學(xué)模型,它必然與某些實(shí)際原型相對(duì)應(yīng)著。因此引入數(shù)學(xué)概念時(shí),融入數(shù)學(xué)建模是完全可行的,每當(dāng)引入新概念時(shí),都可以選擇相關(guān)的實(shí)例來(lái)說(shuō)明這部分內(nèi)容的實(shí)用性。在概念引入時(shí),盡可能選取生活中的常見(jiàn)小問(wèn)題來(lái)還原現(xiàn)實(shí)情境后的數(shù)學(xué),使學(xué)生能夠了解概念、定義的來(lái)龍去脈,讓學(xué)生感受到這些定義不是硬性規(guī)定的,而是與實(shí)際生活緊密相連的。從而便于學(xué)生對(duì)概念的理解與掌握。例如,在給出“定積分”這個(gè)概念時(shí),強(qiáng)調(diào)定積分的思想是“分割取近似,求和取極限”。從求曲邊梯形面積、變速直線運(yùn)動(dòng)的路程、變力做工等生活中常見(jiàn)的.實(shí)際問(wèn)題入手。盡管要求的這些問(wèn)題的實(shí)際意義不同,但求解它們的方法及步驟卻都是一樣的,即都可以通過(guò)無(wú)限細(xì)分、取近似、求和、取極限的思想方法來(lái)實(shí)現(xiàn)求解過(guò)程。最終都可以抽象成為一個(gè)和式的極限,從而得到定積分的概念。

  2.有利于激發(fā)學(xué)生學(xué)習(xí)高等數(shù)學(xué)課程的興趣與熱情

  高等數(shù)學(xué)教學(xué)中長(zhǎng)期以來(lái)都是重視理論基礎(chǔ)、輕實(shí)踐應(yīng)用。教師在授課過(guò)程中注重基礎(chǔ)理論知識(shí)的整體性、統(tǒng)一性,根據(jù)教學(xué)大綱的要求,按部就班的按照傳統(tǒng)授課方法,以完成教學(xué)工作任務(wù)為目標(biāo)。而對(duì)教材中關(guān)于理論基礎(chǔ)知識(shí)應(yīng)用的部分或是刪除、或是略講。同時(shí)高等數(shù)學(xué)課堂上基本上是以教師講授為主,學(xué)生參與較少、活著幾乎沒(méi)有,定義定理的講解、證明過(guò)程枯燥無(wú)味,再加上套用現(xiàn)成公式來(lái)解題的做題方法,導(dǎo)致學(xué)生沒(méi)有學(xué)習(xí)的興趣,學(xué)生即使能做題,也是知其然不知其所以然,缺乏應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力。長(zhǎng)此以往,在學(xué)生眼中,數(shù)學(xué)就成了晦澀難懂、高不可攀的一門高深學(xué)問(wèn)。在高等數(shù)學(xué)課程教學(xué)環(huán)節(jié)中數(shù)學(xué)建模案例模型,例如引入“生豬最佳出售時(shí)機(jī)模型”,使學(xué)生了解到可以用簡(jiǎn)單的數(shù)學(xué)知識(shí)解決重要的實(shí)際問(wèn)題,從而發(fā)現(xiàn)數(shù)學(xué)理論知識(shí)不是超越現(xiàn)實(shí)的、抽象的,并在完善案例模型的過(guò)程中提高數(shù)學(xué)理論知識(shí)的學(xué)習(xí)。高等數(shù)學(xué)教學(xué)的目的不是為了培養(yǎng)從事專門進(jìn)行數(shù)學(xué)研究的人才,而是要學(xué)生懂得數(shù)學(xué)是工具,教會(huì)學(xué)生這個(gè)工具來(lái)解決實(shí)際問(wèn)題才是根本。當(dāng)通過(guò)具體數(shù)學(xué)模型案例,使學(xué)生真正體會(huì)到了數(shù)學(xué)在解決實(shí)際問(wèn)題中的巨大作用,可以增強(qiáng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的主動(dòng)性,并對(duì)高等數(shù)學(xué)課程產(chǎn)生濃厚的學(xué)習(xí)興趣,利于高等數(shù)學(xué)課程學(xué)習(xí)的順利完成。

  3.有利于學(xué)生對(duì)數(shù)學(xué)理論知識(shí)的應(yīng)用,提高學(xué)生專業(yè)素質(zhì)

  從月蝕中地球的陰影計(jì)算出月球、地球之間的距離是古代數(shù)學(xué)建模的經(jīng)典案例,而牛頓的萬(wàn)有引力定律則是現(xiàn)代數(shù)學(xué)建模的成功運(yùn)用的案例之一。諸如最優(yōu)捕魚策略、生豬的最佳出售時(shí)機(jī)、投資的收入和風(fēng)險(xiǎn)等現(xiàn)代數(shù)學(xué)模型表明,數(shù)學(xué)建模的應(yīng)用已經(jīng)不僅僅局限在天文學(xué)、物理學(xué)、化學(xué)領(lǐng)域,而已經(jīng)快速地向生物、經(jīng)濟(jì)、金融等領(lǐng)域延伸,幾乎在人類社會(huì)生活的每個(gè)角落都能看到它所發(fā)揮的無(wú)窮威力。近年來(lái),隨著計(jì)算機(jī)的飛速發(fā)展,數(shù)學(xué)的應(yīng)用性更是得到充分發(fā)揮。利用數(shù)學(xué)方法解決實(shí)際問(wèn)題時(shí),首先要進(jìn)行的工作是分析問(wèn)題建立數(shù)學(xué)模型,然后利用計(jì)算機(jī)軟件對(duì)模型進(jìn)行求解。高等教育中本科階段,大部分高校的人才培養(yǎng)目標(biāo)是培養(yǎng)應(yīng)用型人才,而培養(yǎng)這類人才的關(guān)鍵是培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)理論知識(shí)的能力。數(shù)學(xué)建模是將理論知識(shí)與實(shí)際問(wèn)題聯(lián)系起來(lái)的橋梁和紐帶。因此在高等數(shù)學(xué)授課過(guò)程中引入數(shù)學(xué)建模,在便于學(xué)生理論知識(shí)學(xué)習(xí)的同時(shí),加強(qiáng)學(xué)生對(duì)數(shù)學(xué)理論知識(shí)的應(yīng)用性。教師應(yīng)注重學(xué)生專業(yè)背景,引入與學(xué)生所學(xué)專業(yè)相關(guān)的數(shù)學(xué)模型,這樣才能有助于激發(fā)學(xué)生的學(xué)習(xí)積極性,即用所學(xué)高等數(shù)學(xué)知識(shí)解決了實(shí)際問(wèn)題,又提高了學(xué)生專業(yè)素養(yǎng)。

  總之,數(shù)學(xué)建模在高等數(shù)學(xué)教學(xué)中起著重要作用,在加深學(xué)生對(duì)教材的概念的理解掌握的同時(shí),能激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣與熱情,發(fā)揮學(xué)生學(xué)習(xí)的主觀能動(dòng)性,提高學(xué)生運(yùn)用理論知識(shí)解決實(shí)際問(wèn)題的能力,為提高高等數(shù)學(xué)課程教學(xué)質(zhì)量奠定堅(jiān)實(shí)基礎(chǔ)。

數(shù)學(xué)建模論文模板4

  1數(shù)學(xué)建模在煤礦安全生產(chǎn)中的意義

  在瓦斯系統(tǒng)的研究過(guò)程中,應(yīng)用數(shù)學(xué)建模的手段為礦井瓦斯構(gòu)建數(shù)學(xué)模型,可以為采煤方案的設(shè)計(jì)和通風(fēng)系統(tǒng)的建設(shè)提供很大的幫助;尤其是對(duì)于我國(guó)眾多的中小型煤礦而言,因?yàn)橘Y金有限而導(dǎo)致安全設(shè)施不完善,有的更是沒(méi)有安全項(xiàng)目的投入,僅僅建設(shè)了極為少量的給風(fēng)設(shè)備,通風(fēng)系統(tǒng)并不完善。這些煤礦試圖依靠通風(fēng)量來(lái)對(duì)瓦斯體積分?jǐn)?shù)進(jìn)行調(diào)控,這是十分困難的,對(duì)瓦斯體積分?jǐn)?shù)進(jìn)行預(yù)測(cè)更是不可能的。很多小煤礦使用的仍舊是十分原始的采煤方法,沒(méi)有相關(guān)的規(guī)劃;當(dāng)瓦斯等有害氣體體積分?jǐn)?shù)升高之后就停止挖掘,體積分?jǐn)?shù)下降之后又繼續(xù)進(jìn)行開采。這種開采方式的工作效率十分低下。

  只要設(shè)計(jì)一個(gè)充分合理的通風(fēng)系統(tǒng)的通風(fēng)量,與采煤速度處于一個(gè)動(dòng)態(tài)的平衡狀態(tài),就可以在不延誤煤炭開采的同時(shí)將礦井內(nèi)的瓦斯氣體體積分?jǐn)?shù)控制在一個(gè)安全的范圍之內(nèi)。這樣不僅可以保障工人的安全,還可以保證煤炭的開采效率,每個(gè)礦井都會(huì)存在著這樣的一個(gè)平衡點(diǎn),這就對(duì)礦井瓦斯涌出量判斷的準(zhǔn)確性提出更高的要求。

  2煤礦生產(chǎn)計(jì)劃的優(yōu)化方法

  生產(chǎn)計(jì)劃是對(duì)生產(chǎn)全過(guò)程進(jìn)行合理規(guī)劃的有效手段,是一個(gè)十分繁復(fù)的過(guò)程,涉及到的約束因素很多,條理性很差。為了成功解決這個(gè)復(fù)雜的問(wèn)題,現(xiàn)將常用的生產(chǎn)計(jì)劃分為兩個(gè)大類。

  2.1基于數(shù)學(xué)模型的方法

  (1)數(shù)學(xué)規(guī)劃方法這個(gè)規(guī)劃方法設(shè)計(jì)了很多種各具特點(diǎn)的手段,根據(jù)生產(chǎn)計(jì)劃做出一個(gè)虛擬的模型,在這里主要討論的是處于靜止?fàn)顟B(tài)下所產(chǎn)生的問(wèn)題。從目前取得的效果來(lái)看,研究的方向正在逐漸從小系統(tǒng)向大系統(tǒng)推進(jìn),從過(guò)去的單個(gè)層次轉(zhuǎn)換到多個(gè)層次。

  (2)最優(yōu)控制方法這種方式應(yīng)用理論上的控制方法對(duì)生產(chǎn)計(jì)劃進(jìn)行了研究,而在這里主要是針對(duì)其在動(dòng)態(tài)情況下的問(wèn)題進(jìn)行探討。

  2.2基于人工智能方法

  (1)專家系統(tǒng)方法專家系統(tǒng)是一種將知識(shí)作為基礎(chǔ)的為計(jì)算機(jī)編程的系統(tǒng),對(duì)于某個(gè)領(lǐng)域的繁復(fù)問(wèn)題給出一個(gè)專家級(jí)別的解決方案。而建立一個(gè)專家系統(tǒng)的關(guān)鍵之處在于,要預(yù)先將相關(guān)專家的知識(shí)等組成一個(gè)資料庫(kù)。其由專家系統(tǒng)知識(shí)庫(kù)、數(shù)據(jù)庫(kù)和推理機(jī)制構(gòu)成。

  (2)專家系統(tǒng)與數(shù)學(xué)模型相結(jié)合的方法常見(jiàn)的有以下幾種類型:①根據(jù)不同情況建立不同的數(shù)學(xué)模型,而后由專家系統(tǒng)來(lái)進(jìn)行求解;②將復(fù)雜的問(wèn)題拆分為多個(gè)簡(jiǎn)單的子問(wèn)題,而后針對(duì)建模的子問(wèn)題進(jìn)行建模,對(duì)于難以進(jìn)行建模的問(wèn)題則使用專家系統(tǒng)來(lái)進(jìn)行處理。在整體系統(tǒng)中兩者可以進(jìn)行串行工作。

  3煤礦安全生產(chǎn)中數(shù)學(xué)模型的優(yōu)化建立

  根據(jù)相關(guān)數(shù)據(jù)資料來(lái)進(jìn)行模擬,而后再使用系統(tǒng)分析來(lái)得出適合建立哪種數(shù)學(xué)模型。取幾個(gè)具有明顯特征的采礦點(diǎn)進(jìn)行研究。在煤礦挖掘的過(guò)程中瓦斯體積分?jǐn)?shù)每時(shí)每刻都在變化,可以通過(guò)通風(fēng)量以及煤炭采集速度來(lái)保證礦中瓦斯體積分?jǐn)?shù)處在一個(gè)安全的范圍之內(nèi)。假設(shè)礦井分為地面、地下一層與地下二層工作面,取地下一層兩個(gè)礦井分別為礦井A、礦井B,地下二層分別為礦井C、礦井D.然后對(duì)其進(jìn)行分析。

  3.1建立簡(jiǎn)化模型

  3.1.1模型構(gòu)建表達(dá)工作面A瓦斯體積分?jǐn)?shù)x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯體積分?jǐn)?shù);u1---A工作面采煤進(jìn)度;w1---A礦井所對(duì)應(yīng)的'空氣流速;w2---相鄰B工作面的空氣流速;a1、b1、c1、d1---未知量系數(shù)。

  很明顯A工作面的通風(fēng)量對(duì)自身瓦斯體積分?jǐn)?shù)所產(chǎn)生的影響要顯著大于B工作面的風(fēng)量,從數(shù)學(xué)模型上反映出來(lái)就是要求c1d1.同樣的B工作面(x·2)和工作面A所在的位置很相似,也就應(yīng)該具有與之接近的數(shù)學(xué)關(guān)系式

  式中x2---B工作面瓦斯體積分?jǐn)?shù);

  u2---B工作面采煤進(jìn)度;

  w1---B礦井所對(duì)應(yīng)的空氣流速;

  w2---相鄰A工作面的空氣流速;

  a2、b2、c2、d2---未知量系數(shù)。

  CD工作面(x·3、x·4)都位于B2層的位置,其工作面瓦斯體積分?jǐn)?shù)不只受

  到自身開采進(jìn)度情況的影響,還受到上層AB通風(fēng)口開闊度的影響。在這里,C、D工作面瓦斯體積分?jǐn)?shù)就應(yīng)該和各個(gè)通風(fēng)口的通風(fēng)量有著密不可分的聯(lián)系;于是C、D工作面瓦斯體積分?jǐn)?shù)可以表示為【3】

  式中x3、x4---C、D工作面的瓦斯體積分?jǐn)?shù);

  e1、e2---A、B工作面的瓦斯體積分?jǐn)?shù);

  a3、b3、c3、d3---未知量系數(shù):

  f1、f2---A、B工作面的瓦斯絕對(duì)涌出量。

  3.1.2系統(tǒng)簡(jiǎn)化模型的辨識(shí)這個(gè)簡(jiǎn)化模型其實(shí)就是對(duì)于參數(shù)的最為初步的求解,也就是在一段時(shí)間內(nèi)的實(shí)際測(cè)量所得數(shù)據(jù)作為流通量,對(duì)上面方程組進(jìn)行求解操作。而后得到數(shù)學(xué)模型,將實(shí)際數(shù)據(jù)和預(yù)測(cè)數(shù)據(jù)進(jìn)行多次較量,再加入相關(guān)人員的長(zhǎng)期經(jīng)驗(yàn)(經(jīng)驗(yàn)公式)。修正之后的模型依舊使用上述的方法來(lái)進(jìn)行求解,因?yàn)锳、B工作面基本不會(huì)受C、D工作面的影響。

  3.2模型的轉(zhuǎn)型及其離散化

  因?yàn)檫@個(gè)項(xiàng)目是一個(gè)礦井安全模擬系統(tǒng),要對(duì)數(shù)學(xué)模型進(jìn)行離散型研究,這是使用隨機(jī)數(shù)字進(jìn)行試數(shù)求解的關(guān)鍵步驟。離散化之后的模型為【1】

  在使用原始數(shù)據(jù)來(lái)對(duì)數(shù)學(xué)模型進(jìn)行辨識(shí)的過(guò)程中,ui表示開采進(jìn)度,以t/d為單位,相關(guān)風(fēng)速單位是m/s,k為工作面固定系數(shù),h為4個(gè)工作面平均深度。為了便于將該系統(tǒng)轉(zhuǎn)化為計(jì)算機(jī)語(yǔ)言,把開采進(jìn)度ui從初始的0~1000t/d范圍,轉(zhuǎn)變?yōu)?~1,那么在數(shù)字化采煤中進(jìn)度單位1即表示1000t/d,如果ui=0.5就表示每日產(chǎn)煤量500t.諸如此類,工作面空氣流通速度wi的原始取值范圍是0~4m/s,對(duì)其進(jìn)行數(shù)字化,其新數(shù)值依舊是0~1,也就表示這wi取1時(shí)表示風(fēng)速為4m/s,若0.5表示通風(fēng)口的開通程度是0.5,也就是通風(fēng)口打開一半(2m/s),wi如果取1則表示通風(fēng)口開到最大。

  依照上述分析來(lái)進(jìn)行數(shù)字化轉(zhuǎn)換,數(shù)據(jù)都會(huì)產(chǎn)生變化,經(jīng)過(guò)計(jì)算之后可以得到新的參數(shù)數(shù)據(jù),在計(jì)算的過(guò)程之中使用0~1的數(shù)據(jù)是為了方便和計(jì)算機(jī)語(yǔ)言的轉(zhuǎn)換,在進(jìn)行仿真錄入時(shí)在0~1之間的一個(gè)有效數(shù)字就會(huì)方便很多。開采進(jìn)度ui的取值范圍0~1表示的是每日產(chǎn)煤數(shù)量區(qū)間是0~1000t,而風(fēng)速wi取值0~1所表示的是風(fēng)速取值在0~4m/s這個(gè)區(qū)間之內(nèi)。

  3.3模型的應(yīng)用效果及降低瓦斯體積分?jǐn)?shù)的措施

  以上對(duì)煤礦生產(chǎn)中的常見(jiàn)問(wèn)題進(jìn)行了相關(guān)分析,發(fā)現(xiàn)伴隨著時(shí)間的不斷增長(zhǎng)瓦斯涌體積分?jǐn)?shù)等都會(huì)逐漸衰減,一段時(shí)間后就會(huì)變得微乎其微,這就表明這類資料存在著一個(gè)衰減周期,經(jīng)過(guò)長(zhǎng)期觀測(cè)發(fā)現(xiàn)衰減周期T≈18h.而后,又研究了會(huì)對(duì)瓦斯涌出量產(chǎn)生影響的其他因素,發(fā)現(xiàn)在使用炮采這種方式時(shí)瓦斯體積分?jǐn)?shù)會(huì)以幾何數(shù)字的速度衰減,使用割煤手段進(jìn)行采礦時(shí)瓦斯會(huì)大量涌出,其余工藝在采煤時(shí)并不會(huì)導(dǎo)致瓦斯體積分?jǐn)?shù)產(chǎn)生劇烈波動(dòng)。瓦斯的涌出量伴隨著挖掘進(jìn)度而提升,近乎于成正比,而又和通風(fēng)量成反比關(guān)系。因?yàn)樾碌V的瓦斯體積分?jǐn)?shù)比較大,所以要及時(shí)將煤運(yùn)出,盡量縮短在煤礦中滯留的時(shí)間,從而減小瓦斯涌出總量。

  綜上所述,降低工作面瓦斯體積分?jǐn)?shù)常用手段有以下幾種:①將采得的煤快速運(yùn)出,使其在井中停留的時(shí)間最短;②增大工作面的通風(fēng)量;③控制采煤進(jìn)度,同時(shí)也可以控制瓦斯的涌出量。

  4結(jié)語(yǔ)

  應(yīng)用數(shù)學(xué)建模的手段對(duì)礦井在采礦過(guò)程中涌出的瓦斯體積分?jǐn)?shù)進(jìn)行了模擬及預(yù)測(cè),為精確預(yù)測(cè)礦井瓦斯體積分?jǐn)?shù)提供了一個(gè)新的思路,對(duì)煤礦安全高效生產(chǎn)提供了幫助,有著重要的現(xiàn)實(shí)意義。

數(shù)學(xué)建模論文模板5

  數(shù)學(xué)核心素養(yǎng)是數(shù)學(xué)課程的基本理念和總體目標(biāo)的體現(xiàn),可以有效地指導(dǎo)數(shù)學(xué)教學(xué)實(shí)踐。《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》修訂稿提出了數(shù)學(xué)學(xué)科的六種核心素養(yǎng),即數(shù)學(xué)抽象、直觀想象、數(shù)學(xué)建模、邏輯推理、數(shù)學(xué)運(yùn)算和數(shù)據(jù)分析。其中,數(shù)學(xué)建模是六大數(shù)學(xué)核心素養(yǎng)之一。提升數(shù)學(xué)核心素養(yǎng),要求數(shù)學(xué)教師在課堂教學(xué)中強(qiáng)化學(xué)生的建模意識(shí)。教師在教學(xué)中通過(guò)設(shè)置數(shù)學(xué)建;顒(dòng),培養(yǎng)學(xué)生的建模能力。

  一、數(shù)學(xué)建模的含義

  數(shù)學(xué)建模是將實(shí)際問(wèn)題中的因素進(jìn)行簡(jiǎn)化,抽象變成數(shù)學(xué)中的參數(shù)和變量,運(yùn)用數(shù)學(xué)理論進(jìn)行求解和驗(yàn)證,并確定最終是否能夠用于解決問(wèn)題的多次循環(huán)。數(shù)學(xué)建模能力包括轉(zhuǎn)化能力、數(shù)學(xué)知識(shí)應(yīng)用能力、創(chuàng)造力和溝通與合作能力。

  二、數(shù)學(xué)建模能力的培養(yǎng)與強(qiáng)化

  1.精心設(shè)計(jì)導(dǎo)學(xué)案,引導(dǎo)學(xué)生通過(guò)自主探究進(jìn)行建模

  在新授課前,教師設(shè)計(jì)前置性學(xué)習(xí)導(dǎo)學(xué)案,為學(xué)生掃除知識(shí)性和方向性的障礙。通過(guò)導(dǎo)學(xué)案,引導(dǎo)學(xué)生去探究問(wèn)題的關(guān)鍵,對(duì)模型的構(gòu)建先有一個(gè)初步的`自主學(xué)習(xí)過(guò)程。通過(guò)自主學(xué)習(xí)探究,讓學(xué)生充分暴露問(wèn)題,提高模型教學(xué)的針對(duì)性。在前置性學(xué)習(xí)導(dǎo)學(xué)案設(shè)計(jì)的問(wèn)題的啟發(fā)與引導(dǎo)下,學(xué)生會(huì)逐步學(xué)習(xí)、研究和應(yīng)用數(shù)學(xué)模型,形成解決問(wèn)題的新方法,強(qiáng)化建模意識(shí)和參與實(shí)踐的意識(shí)。例如,教師在引導(dǎo)學(xué)生構(gòu)建關(guān)于測(cè)量類模型時(shí),設(shè)計(jì)的導(dǎo)學(xué)案應(yīng)提醒學(xué)生對(duì)測(cè)量物體進(jìn)行抽象化理解,并掌握基本常識(shí)。教師應(yīng)鼓勵(lì)學(xué)生采用多種不同的測(cè)量方式,分析并優(yōu)化所得數(shù)據(jù)。通過(guò)引導(dǎo)學(xué)生自主探究,讓學(xué)生探索并歸納不同條件下的模型建立的方法,培養(yǎng)學(xué)生的建模維能力。

  2.在教學(xué)環(huán)節(jié)中融入數(shù)學(xué)模型教學(xué)

  教師在教學(xué)的各個(gè)環(huán)節(jié)都可以融入數(shù)學(xué)模型教學(xué)。例如,教師在新課教學(xué)時(shí),應(yīng)注意滲透數(shù)學(xué)建模思想,讓學(xué)生將新授課中的數(shù)學(xué)知識(shí)點(diǎn)與實(shí)際生活相聯(lián)系,將實(shí)際生活中與數(shù)學(xué)相關(guān)的案例引入課堂教學(xué),引導(dǎo)學(xué)生將案例內(nèi)化為數(shù)學(xué)應(yīng)用模型,以此激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。在不同教學(xué)環(huán)節(jié),教師通過(guò)聯(lián)系現(xiàn)實(shí)生活中熟悉的事例,將教材上的內(nèi)容生動(dòng)地展示給學(xué)生,從而強(qiáng)化學(xué)生運(yùn)用數(shù)學(xué)模型解決實(shí)際問(wèn)題的能力。

  教師通過(guò)描述數(shù)學(xué)問(wèn)題產(chǎn)生的背景,以問(wèn)題背景為導(dǎo)向,開展新授課的學(xué)習(xí)。教師在復(fù)習(xí)課教學(xué)環(huán)節(jié),注重提煉和總結(jié)解題模型,培養(yǎng)學(xué)生的轉(zhuǎn)換能力,讓學(xué)生多方位認(rèn)識(shí)和運(yùn)用數(shù)學(xué)模型。相對(duì)而言,高中階段的數(shù)學(xué)問(wèn)題更加注重知識(shí)的綜合考查,對(duì)思維的靈活性要求較高。高中階段考查的數(shù)學(xué)知識(shí)、解題方法以及數(shù)學(xué)思想基本不變,設(shè)置的題目形式相對(duì)穩(wěn)定。因此,教師應(yīng)適當(dāng)引導(dǎo),合理啟發(fā),對(duì)答題思路進(jìn)行分析,逐步系統(tǒng)地構(gòu)建重點(diǎn)題型的解題模型。

  3.結(jié)合教學(xué)實(shí)驗(yàn),開展數(shù)學(xué)建;顒(dòng)

  教師在開展數(shù)學(xué)建模活動(dòng)時(shí),應(yīng)結(jié)合教學(xué)實(shí)驗(yàn)。開展活動(dòng)課和實(shí)踐課,可以促使學(xué)生進(jìn)行合作學(xué)習(xí)。教師要適時(shí)進(jìn)行數(shù)學(xué)實(shí)驗(yàn)教學(xué),可以每周布置一個(gè)教學(xué)實(shí)驗(yàn)課例,讓學(xué)生主動(dòng)地從數(shù)學(xué)建模的角度解決問(wèn)題。在教學(xué)實(shí)驗(yàn)中,以小組合作的形式,讓學(xué)生寫出實(shí)驗(yàn)報(bào)告。教師讓學(xué)生在課堂上進(jìn)行小組交流,并對(duì)各組的交流進(jìn)行總結(jié)。教學(xué)實(shí)驗(yàn)可以促使學(xué)生在探索中增強(qiáng)數(shù)學(xué)建模意識(shí),提升數(shù)學(xué)核心素養(yǎng)。

  4.在數(shù)學(xué)建模教學(xué)中,注重相關(guān)學(xué)科的聯(lián)系

  教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注重選用數(shù)學(xué)與化學(xué)、物理、生物等科目相結(jié)合的跨學(xué)科問(wèn)題進(jìn)行教學(xué)。教師可以從這些科目中選擇相關(guān)的應(yīng)用題,引導(dǎo)學(xué)生通過(guò)數(shù)學(xué)建模,應(yīng)用數(shù)學(xué)工具,解決其他學(xué)科的難題。例如,有些學(xué)生以為學(xué)好生物是與數(shù)學(xué)沒(méi)有關(guān)系的,因?yàn)楦咧猩飳W(xué)科是以描述性的語(yǔ)言為主的。這些學(xué)生缺乏理科思維,尚未樹立理科意識(shí)。例如,學(xué)生可以用數(shù)學(xué)上的概率的相加和相乘原理來(lái)解決生物上的一些遺傳病概率的計(jì)算問(wèn)題,也可以用數(shù)學(xué)上的排列與組合分析生物上的減數(shù)分裂過(guò)程和配子的基因組成問(wèn)題。又如,在學(xué)習(xí)正弦函數(shù)時(shí),教師可以引導(dǎo)學(xué)生運(yùn)用模型函數(shù),寫出在物理學(xué)科中學(xué)到的交流圖像的數(shù)學(xué)表達(dá)式。這就需要教師在課堂教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此,教師在數(shù)學(xué)建模教學(xué)中,應(yīng)注意與其他學(xué)科的聯(lián)系。通過(guò)數(shù)學(xué)建模,幫助學(xué)生理解其他學(xué)科知識(shí),強(qiáng)化學(xué)生的學(xué)習(xí)能力。注重?cái)?shù)學(xué)與其他學(xué)科的聯(lián)系,是培養(yǎng)學(xué)生建模意識(shí)的重要途徑。

  總之,教師在數(shù)學(xué)教學(xué)過(guò)程中,應(yīng)以學(xué)生為本,精心設(shè)計(jì)導(dǎo)學(xué)案,鼓勵(lì)學(xué)生自主探究和應(yīng)用數(shù)學(xué)模型。通過(guò)建模教學(xué),讓學(xué)生形成數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題相互轉(zhuǎn)化的數(shù)學(xué)應(yīng)用意識(shí)和建模意識(shí)。教師通過(guò)強(qiáng)化數(shù)學(xué)建模意識(shí),讓學(xué)生掌握數(shù)學(xué)模型應(yīng)用的方法,可以使學(xué)生奠定堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ),提升數(shù)學(xué)核心素養(yǎng)。

  參考文獻(xiàn):

  [1]鄭蘭,肖文平.基于問(wèn)題驅(qū)動(dòng)的數(shù)學(xué)建模教學(xué)理念的探索與時(shí)間[J].武漢船舶職業(yè)技術(shù)學(xué)院學(xué)報(bào),20xx(4).

  [2]王國(guó)君.高中數(shù)學(xué)建模教學(xué)[J].教育科學(xué)(引文版),20xx(8).

  [3]李明振,齊建華.中學(xué)數(shù)學(xué)教師數(shù)學(xué)建模能力的培養(yǎng)[J].河南教育學(xué)院學(xué)報(bào)(自然科學(xué)版),20xx(2).

數(shù)學(xué)建模論文模板6

  數(shù)學(xué)建模是利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法,它幾乎是一切應(yīng)用科學(xué)的基礎(chǔ),數(shù)學(xué)實(shí)驗(yàn)是應(yīng)用計(jì)算機(jī)技術(shù)和先進(jìn)的數(shù)學(xué)軟件來(lái)學(xué)習(xí)和應(yīng)用數(shù)學(xué)。數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)著眼于培養(yǎng)學(xué)生數(shù)學(xué)知識(shí)應(yīng)用能力與創(chuàng)新意識(shí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,強(qiáng)調(diào)對(duì)數(shù)學(xué)的體驗(yàn)與探索。加強(qiáng)實(shí)踐教學(xué),是當(dāng)前大學(xué)數(shù)學(xué)教學(xué)改革的核心內(nèi)容,將數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)融入到大學(xué)數(shù)學(xué)的教學(xué)中,必將推動(dòng)大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容和課程體系的改革。

  1地方本科院校大學(xué)數(shù)學(xué)的教學(xué)現(xiàn)狀

  大學(xué)數(shù)學(xué),是高等學(xué)校理工專業(yè)、財(cái)會(huì)專業(yè)最重要的基礎(chǔ)課程之一,對(duì)于學(xué)生而言,大學(xué)數(shù)學(xué)內(nèi)容多、難度大,掛科率高,是學(xué)生最為頭疼的課程。當(dāng)前,地方本科院校大學(xué)數(shù)學(xué)的教學(xué)存在著四個(gè)主要問(wèn)題:(1)當(dāng)前的教學(xué)是“重理論,輕實(shí)踐”。現(xiàn)行大學(xué)數(shù)學(xué)的教材和教學(xué)內(nèi)容非常穩(wěn)定,教學(xué)改革時(shí)變化不大,依然按照定義、性質(zhì)、定理、例題、習(xí)題的模式進(jìn)行,最后考試;(2)絕大多數(shù)專業(yè)不開設(shè)“數(shù)學(xué)建模”和“數(shù)學(xué)實(shí)驗(yàn)”課程,學(xué)生不清楚學(xué)習(xí)數(shù)學(xué)有什么用,而且教學(xué)內(nèi)容單一,與學(xué)生的專業(yè)的關(guān)聯(lián)性很小,所以學(xué)生對(duì)大學(xué)數(shù)學(xué)缺乏興趣;(3)大學(xué)數(shù)學(xué)課程課時(shí)少,內(nèi)容多,教師在教學(xué)中只是趕進(jìn)度教完所要求的內(nèi)容,以“學(xué)生為主”的教學(xué)理念難以貫徹;(4)大學(xué)數(shù)學(xué)課程的教學(xué)并沒(méi)有隨著計(jì)算機(jī)技術(shù)的和數(shù)學(xué)建模而發(fā)生根本性改變。

  2數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)

  數(shù)學(xué)建模就是用數(shù)學(xué)的語(yǔ)言來(lái)刻畫和描述一個(gè)實(shí)際問(wèn)題,將它變成一個(gè)數(shù)學(xué)上得問(wèn)題,然后經(jīng)過(guò)數(shù)學(xué)的處理,并以計(jì)算機(jī)為工具,應(yīng)用數(shù)學(xué)軟件,得到定量的結(jié)果。對(duì)實(shí)際問(wèn)題建立模型時(shí),首先要識(shí)別問(wèn)題,即了解問(wèn)題的背景,分清問(wèn)題的主要因素和次要因素,提出合理的假設(shè);其次,利用相應(yīng)的數(shù)學(xué)方法建立數(shù)學(xué)模型,并且借助數(shù)學(xué)軟件求解模型;最后,將所得解與實(shí)際問(wèn)題作比較,分析模型的實(shí)際意義。凡是要用數(shù)學(xué)來(lái)解決的實(shí)際問(wèn)題,都是應(yīng)用數(shù)學(xué)建模的思想和方法來(lái)解決的。隨著計(jì)算機(jī)技術(shù)的飛速發(fā)展,給數(shù)學(xué)建模以極大的推動(dòng),人們?cè)絹?lái)越認(rèn)識(shí)到數(shù)學(xué)和數(shù)學(xué)建模的重要性。

  數(shù)學(xué)實(shí)驗(yàn)指學(xué)生在教師指導(dǎo)下用計(jì)算機(jī)和軟件包學(xué)習(xí)數(shù)學(xué)和進(jìn)行數(shù)學(xué)建模求解。具體而言就是利用計(jì)算機(jī)和數(shù)學(xué)軟件為實(shí)驗(yàn)工具,以數(shù)學(xué)理論作為實(shí)驗(yàn)原理,以數(shù)學(xué)問(wèn)題為等作為實(shí)驗(yàn)內(nèi)容,以學(xué)生為主體進(jìn)行仿真計(jì)算、歸納總結(jié)等探索活動(dòng)。數(shù)學(xué)實(shí)驗(yàn)有著極重要的教育價(jià)值,數(shù)學(xué)實(shí)驗(yàn)課與傳統(tǒng)的`課堂教學(xué)是不同的,它把“教師講授一學(xué)生聽練一測(cè)驗(yàn)考試”的過(guò)去的學(xué)習(xí)過(guò)程,變成“問(wèn)題一猜想一實(shí)驗(yàn)一驗(yàn)證一創(chuàng)新”的學(xué)習(xí)過(guò)程,使數(shù)學(xué)教學(xué)從單純的教師講授、學(xué)生被動(dòng)接受的模式發(fā)展到學(xué)生主動(dòng)學(xué)習(xí)模式,這與當(dāng)前的課程教學(xué)改革理念完全一致。在數(shù)學(xué)實(shí)驗(yàn)中,由于現(xiàn)代信息技術(shù)的應(yīng)用,使學(xué)生擺脫了繁雜的、乏味的數(shù)學(xué)推算和數(shù)值計(jì)算,給學(xué)生創(chuàng)設(shè)了良好的實(shí)踐環(huán)境。數(shù)學(xué)實(shí)驗(yàn)對(duì)突破課堂教學(xué)中的難點(diǎn),培養(yǎng)學(xué)生的創(chuàng)造性思維、實(shí)踐能力和辯證唯物主義觀具有特殊作用。

  3數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入大學(xué)數(shù)學(xué)課程的意義

  3.1數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)?zāi)芘囵B(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的能力和創(chuàng)新能力

  數(shù)學(xué)建模過(guò)程和數(shù)學(xué)實(shí)驗(yàn)是一個(gè)創(chuàng)造性的過(guò)程。學(xué)生在進(jìn)行數(shù)學(xué)建;顒(dòng)時(shí),首先要了解問(wèn)題的實(shí)際背景,要求學(xué)生有較強(qiáng)的文獻(xiàn)搜索能力和自學(xué)能力;同時(shí),學(xué)生不僅要了解數(shù)學(xué)學(xué)科知識(shí)和各種數(shù)學(xué)方法,還要求學(xué)生熟悉一種或幾種數(shù)學(xué)軟件,熟練地設(shè)計(jì)算法,編制程序解決當(dāng)前實(shí)際問(wèn)題,最后還要把完整的解決問(wèn)題的過(guò)程和結(jié)果以科技論文的形式呈現(xiàn)出來(lái)。因此,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)在培養(yǎng)學(xué)生的創(chuàng)新能力方面有著非常重要的作用。

  3.2數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有利于提高學(xué)生對(duì)大學(xué)數(shù)學(xué)課程的理解程度和學(xué)習(xí)興趣

  數(shù)學(xué)建模強(qiáng)調(diào)人們認(rèn)識(shí)和揭示客觀現(xiàn)象規(guī)律的過(guò)程。因此,在數(shù)學(xué)課堂教學(xué)中融入數(shù)學(xué)建模,可以讓學(xué)生體驗(yàn)發(fā)現(xiàn)問(wèn)題、了解問(wèn)題、構(gòu)造模型、解決問(wèn)題的過(guò)程,從而啟迪學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)、興趣和能力。數(shù)學(xué)實(shí)驗(yàn)從問(wèn)題出發(fā),側(cè)重于培養(yǎng)學(xué)生用形和量的觀念去觀察和把握現(xiàn)象的能力,有助于學(xué)生抓住問(wèn)題的本質(zhì)和對(duì)抽象的數(shù)學(xué)概念的理解程度。

  3.3數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)有利于培養(yǎng)學(xué)生的自學(xué)能力

  數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)是面向?qū)嶋H問(wèn)題的學(xué)習(xí)方法,很多知識(shí)需要學(xué)生通過(guò)學(xué)生自學(xué)來(lái)掌握,這恰好是對(duì)學(xué)生自學(xué)能力的培養(yǎng)。

  3.4數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)有利于培養(yǎng)學(xué)生的科研能力

  數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)活動(dòng)本身就是科學(xué)研究的過(guò)程,學(xué)生從傳統(tǒng)教學(xué)中的被動(dòng)學(xué)習(xí)變?yōu)橹鲃?dòng)探索。數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)使學(xué)生較早地接觸到科研實(shí)際,熟悉科研程序,極大地提高了學(xué)生的科研能力。

  4將數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入到大學(xué)數(shù)學(xué)教學(xué)實(shí)踐

  數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)可以培養(yǎng)學(xué)生創(chuàng)造力、洞察力和想象力,在激發(fā)學(xué)生學(xué)習(xí)興趣和學(xué)生學(xué)習(xí)的積極性方面都具有獨(dú)特的作用。就地方本科院校大學(xué)數(shù)學(xué)教學(xué)的現(xiàn)狀,如何讓數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)和數(shù)學(xué)教學(xué)有機(jī)結(jié)合起來(lái),在目前是最為關(guān)鍵的。

  4.1開設(shè)數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)選修課

  開設(shè)數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)選修課,可以系統(tǒng)訓(xùn)練學(xué)生利用數(shù)學(xué)建模方法和數(shù)學(xué)實(shí)驗(yàn)方法解決生活中的實(shí)際問(wèn)題。教師應(yīng)以案例和問(wèn)題為導(dǎo)向,展示數(shù)學(xué)解決問(wèn)題的過(guò)程和計(jì)算機(jī)的應(yīng)用。

  4.2將數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)與大學(xué)數(shù)學(xué)的教學(xué)有機(jī)結(jié)合起來(lái)

  多數(shù)非數(shù)學(xué)專業(yè),都要學(xué)習(xí)“高等數(shù)學(xué)”、“線性代數(shù)”、“概率論與數(shù)理統(tǒng)計(jì)”這幾門課程。這幾門課程都抽象難學(xué),所以教學(xué)中在數(shù)學(xué)概念形成的過(guò)程中滲透數(shù)學(xué)建模的思想,在數(shù)學(xué)知識(shí)的應(yīng)用中加以示范。在數(shù)學(xué)知識(shí)學(xué)習(xí)的過(guò)程中,用數(shù)學(xué)實(shí)驗(yàn)的方法讓學(xué)生切身體驗(yàn),將教材的結(jié)果通過(guò)數(shù)學(xué)實(shí)驗(yàn)來(lái)實(shí)現(xiàn),這可以更進(jìn)一步地激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的趣味。

  4.3開展數(shù)學(xué)建模競(jìng)賽活動(dòng)

  從1992年開始,國(guó)家每年舉辦一次全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,數(shù)學(xué)建模競(jìng)賽可以讓學(xué)生親身體驗(yàn)數(shù)學(xué),引發(fā)學(xué)生對(duì)實(shí)際問(wèn)題研究的興趣,受到了大學(xué)生的普遍歡迎。…數(shù)學(xué)建模競(jìng)賽是數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)結(jié)合的一項(xiàng)競(jìng)賽活動(dòng),將大學(xué)數(shù)學(xué)教學(xué)和數(shù)學(xué)建模競(jìng)賽結(jié)合起來(lái),形成穩(wěn)定的實(shí)踐教育體系:對(duì)大一學(xué)生做數(shù)學(xué)建模講座,讓學(xué)生明白什么是數(shù)學(xué)建模;對(duì)大二和大三學(xué)生參加各種級(jí)別的數(shù)學(xué)建模競(jìng)賽,例如,全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,“深圳杯”數(shù)學(xué)建模挑戰(zhàn)賽,泰迪杯數(shù)據(jù)挖掘競(jìng)賽等;大四學(xué)生可以選擇數(shù)學(xué)建模方面的畢業(yè)論文選題或畢業(yè)設(shè)計(jì)。

  5數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入大學(xué)數(shù)學(xué)教學(xué)中應(yīng)注意的問(wèn)題

  首先,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課程屬于實(shí)踐性課程,在講授中貫徹少而精的原則,針對(duì)大學(xué)數(shù)學(xué)課程的主要概念和重要內(nèi)容,切忌追求面面俱到,從而增加學(xué)生的負(fù)擔(dān)。

  其次,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)融入到大學(xué)數(shù)學(xué)教學(xué)中,不是講幾個(gè)案例,做幾次實(shí)驗(yàn),把大學(xué)數(shù)學(xué)體系搞成一個(gè)大雜燴,”大學(xué)數(shù)學(xué)課程中融入數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn),根據(jù)章節(jié)內(nèi)容選取相適應(yīng)的案例,化整為零,適時(shí)融入,達(dá)到“隨風(fēng)潛入夜,潤(rùn)物細(xì)無(wú)聲”的教學(xué)效果。

  最后,數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)融入大學(xué)數(shù)學(xué)中要循序漸進(jìn),從一堂課、一個(gè)案例、一個(gè)數(shù)學(xué)實(shí)驗(yàn)開始,適度拓展,切忌改變大學(xué)數(shù)學(xué)本身完善的教學(xué)體系。

  總之,數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)是大學(xué)數(shù)學(xué)教學(xué)改革的突破口,在大學(xué)數(shù)學(xué)的教學(xué)中融入數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)的思想和方法,有利于實(shí)現(xiàn)從“學(xué)數(shù)學(xué)理論”到“運(yùn)用數(shù)學(xué)解決問(wèn)題”的轉(zhuǎn)變,從而達(dá)到培養(yǎng)應(yīng)用型人才的目標(biāo)。同時(shí),這是一項(xiàng)長(zhǎng)期且艱巨的任務(wù),只有在教學(xué)實(shí)踐中不斷探索、總結(jié),不斷創(chuàng)新,才能提高大學(xué)數(shù)學(xué)教學(xué)質(zhì)量。

數(shù)學(xué)建模論文模板7

  【摘 要】文章闡述了我們應(yīng)用數(shù)學(xué)的發(fā)展現(xiàn)狀,分析了應(yīng)用數(shù)學(xué)建模的意義,提出在應(yīng)用數(shù)學(xué)中滲透建模思想的措施,以期能夠?qū)Ξ?dāng)前應(yīng)用數(shù)學(xué)建模思想的發(fā)展提供參考。

  【關(guān)鍵詞】應(yīng)用數(shù)學(xué); 數(shù)學(xué)建模;建模思想

  將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過(guò)程中去,是我們當(dāng)前開展應(yīng)用數(shù)學(xué)教育的未來(lái)發(fā)展趨勢(shì),怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會(huì)經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實(shí)際問(wèn)題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問(wèn)題,而建模思想在應(yīng)用數(shù)學(xué)中的運(yùn)用則能夠很好的解決這一問(wèn)題。

  1 當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展現(xiàn)狀以及未來(lái)發(fā)展趨勢(shì)

  數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國(guó)數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無(wú)用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對(duì)現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實(shí)際問(wèn)題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問(wèn)題的有效方法。事實(shí)上,數(shù)學(xué)發(fā)展的根本原動(dòng)力,它的最初的根源,是來(lái)自客觀實(shí)際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來(lái)龍去脈,揭示數(shù)學(xué)概念和公式的實(shí)際來(lái)源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會(huì)生產(chǎn)力的不斷發(fā)展,多個(gè)學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運(yùn)用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會(huì)經(jīng)濟(jì)發(fā)展的各個(gè)行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺(tái),也迎來(lái)了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。

  2 開展數(shù)學(xué)建模的意義

  數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計(jì)算機(jī)網(wǎng)絡(luò)在社會(huì)生活中的廣泛運(yùn)用,人們對(duì)于實(shí)踐問(wèn)題的解決要求越來(lái)越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運(yùn)用帶來(lái)了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個(gè)重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識(shí),開展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識(shí),而且還能夠?qū)I(yè)知識(shí)同建模密切結(jié)合在一起,對(duì)于專業(yè)知識(shí)的有效掌握是非常有益的。

  3 滲透建模思想的對(duì)策措施

  3. 1充分重視建模的橋梁作用

  建模是實(shí)現(xiàn)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)問(wèn)題相聯(lián)系的橋梁與紐帶,通過(guò)進(jìn)行建模能夠有效的將實(shí)際問(wèn)題進(jìn)行簡(jiǎn)化。在這一轉(zhuǎn)化的過(guò)程中,應(yīng)當(dāng)深入實(shí)際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對(duì)象的獨(dú)特特征及規(guī)律,構(gòu)建起反映實(shí)際問(wèn)題的數(shù)學(xué)關(guān)系,運(yùn)用數(shù)學(xué)理論進(jìn)行問(wèn)題的解決。這正是各個(gè)學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點(diǎn),通過(guò)引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實(shí)踐問(wèn)題,還能夠推動(dòng)創(chuàng)新意識(shí)的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。

  3. 2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來(lái)

  我國(guó)當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等幾個(gè)部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的`建設(shè)以及其他學(xué)科對(duì)這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問(wèn)題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們?cè)谡n堂上就能夠獲得更多的思考和討論的機(jī)會(huì),能夠充分調(diào)動(dòng)學(xué)生們的積極性,使其能夠立足實(shí)際進(jìn)行思考,這樣一來(lái)就形成了以實(shí)際問(wèn)題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。

  3. 3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動(dòng)

  數(shù)學(xué)應(yīng)用綜合性的實(shí)驗(yàn),要求我們掌握數(shù)學(xué)知識(shí)的綜合性運(yùn)用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實(shí)例,然后學(xué)生上機(jī)實(shí)踐,強(qiáng)調(diào)學(xué)生的動(dòng)手實(shí)踐。數(shù)學(xué)實(shí)驗(yàn) 課應(yīng)該說(shuō)是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。

  上述幾個(gè)部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過(guò)程中認(rèn)真掌握數(shù)學(xué)理論知識(shí),還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實(shí)際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實(shí)踐過(guò)程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來(lái)看,加強(qiáng)創(chuàng)新意識(shí)以及將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題能力的培養(yǎng),提升綜合運(yùn)用本專業(yè)知識(shí)以來(lái)解決實(shí)踐問(wèn)題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。

  參考文獻(xiàn):

  [1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究 [J].出國(guó)與就業(yè)(就業(yè)版),20xx(10).

  [2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專數(shù)學(xué)教 改之趨勢(shì)[J].職大學(xué)報(bào),20xx(02).

  [3]李傳欣.數(shù)學(xué)建模在工程類專業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究 [J].中國(guó)科教創(chuàng)新導(dǎo)刊,20xx(35).

  [4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[J].吉林省 教育學(xué)院學(xué)報(bào)(學(xué)科版),20xx(08).

  [5]吳健輝,黃志堅(jiān),汪龍虎.對(duì)數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[J].景德鎮(zhèn)高專學(xué)報(bào),20xx(04).

數(shù)學(xué)建模論文模板8

  數(shù)學(xué)建模隨著人類的進(jìn)步,科技的發(fā)展和社會(huì)的日趨數(shù)字化,應(yīng)用領(lǐng)域越來(lái)越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來(lái)越豐富。強(qiáng)調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識(shí)對(duì)推動(dòng)素質(zhì)教育的實(shí)施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過(guò)數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。本文將結(jié)合數(shù)學(xué)應(yīng)用題的特點(diǎn),把怎樣利用數(shù)學(xué)建模解好數(shù)學(xué)應(yīng)用問(wèn)題進(jìn)行剖析,希望得到同仁的幫助和指正。

  一、數(shù)學(xué)應(yīng)用題的特點(diǎn)

  我們常把來(lái)源于客觀世界的實(shí)際,具有實(shí)際意義或?qū)嶋H背景,要通過(guò)數(shù)學(xué)建模的方法將問(wèn)題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的一類數(shù)學(xué)問(wèn)題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點(diǎn):

  第一、數(shù)學(xué)應(yīng)用題的本身具有實(shí)際意義或?qū)嶋H背景。這里的'實(shí)際是指生產(chǎn)實(shí)際、社會(huì)實(shí)際、生活實(shí)際等現(xiàn)實(shí)世界的各個(gè)方面的實(shí)際。如與課本知識(shí)密切聯(lián)系的源于實(shí)際生活的應(yīng)用題;與模向?qū)W科知識(shí)網(wǎng)絡(luò)交匯點(diǎn)有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會(huì)市場(chǎng)經(jīng)濟(jì)、環(huán)境保護(hù)、實(shí)事政治等有關(guān)的應(yīng)用題等。

  第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的方法,使所求問(wèn)題數(shù)學(xué)化,即將問(wèn)題轉(zhuǎn)化成數(shù)學(xué)形式來(lái)表示后再求解。

  第三、數(shù)學(xué)應(yīng)用題涉及的知識(shí)點(diǎn)多。是對(duì)綜合運(yùn)用數(shù)學(xué)知識(shí)和方法解決實(shí)際問(wèn)題能力的檢驗(yàn),考查的是學(xué)生的綜合能力,涉及的知識(shí)點(diǎn)一般在三個(gè)以上,如果某一知識(shí)點(diǎn)掌握的不過(guò)關(guān),很難將問(wèn)題正確解答。

  二、數(shù)學(xué)應(yīng)用題如何建模

  第一層次:直接建模。

  根據(jù)題設(shè)條件,套用現(xiàn)成的數(shù)學(xué)公式、定理等數(shù)學(xué)模型,注解圖為:

  第二層次:直接建模。可利用現(xiàn)成的數(shù)學(xué)模型,但必須概括這個(gè)數(shù)學(xué)模型,對(duì)應(yīng)用題進(jìn)行分析,然后確定解題所需要的具體數(shù)學(xué)模型或數(shù)學(xué)模型中所需數(shù)學(xué)量需進(jìn)一步求出,然后才能使用現(xiàn)有數(shù)學(xué)模型。

  第三層次:多重建模。對(duì)復(fù)雜的關(guān)系進(jìn)行提煉加工,忽略次要因素,建立若干個(gè)數(shù)學(xué)模型方能解決問(wèn)題。

  第四層次:假設(shè)建模。要進(jìn)行分析、加工和作出假設(shè),然后才能建立數(shù)學(xué)模型。如研究十字路口車流量問(wèn)題,假設(shè)車流平穩(wěn),沒(méi)有突發(fā)事件等才能建模。

  三、建立數(shù)學(xué)模型應(yīng)具備的能力

  從實(shí)際問(wèn)題中建立數(shù)學(xué)模型,解決數(shù)學(xué)問(wèn)題從而解決實(shí)際問(wèn)題,這一數(shù)學(xué)全過(guò)程的教學(xué)關(guān)鍵是建立數(shù)學(xué)模型,數(shù)學(xué)建模能力的強(qiáng)弱,直接關(guān)系到數(shù)學(xué)應(yīng)用題的解題質(zhì)量,同時(shí)也體現(xiàn)一個(gè)學(xué)生的綜合能力。

  1提高分析、理解、閱讀能力。

  2強(qiáng)化將文字語(yǔ)言敘述轉(zhuǎn)譯成數(shù)學(xué)符號(hào)語(yǔ)言的能力。

  3增強(qiáng)選擇數(shù)學(xué)模型的能力。

  4加強(qiáng)數(shù)學(xué)運(yùn)算能力。

  數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。

數(shù)學(xué)建模論文模板9

  一、小學(xué)數(shù)學(xué)建模

  "數(shù)學(xué)建模"已經(jīng)越來(lái)越被廣大教師所接受和采用,所謂的"數(shù)學(xué)建模"思想就是通過(guò)創(chuàng)建數(shù)學(xué)模型的方式來(lái)解決問(wèn)題,我們把該過(guò)程簡(jiǎn)稱為"數(shù)學(xué)建模",其實(shí)質(zhì)是對(duì)數(shù)學(xué)思維的運(yùn)用,方法和知識(shí)解決在實(shí)際過(guò)程中遇到的數(shù)學(xué)問(wèn)題,這一模式已經(jīng)成為數(shù)學(xué)教育的重要模式和基本內(nèi)容。葉其孝曾發(fā)表《數(shù)學(xué)建模教學(xué)活動(dòng)與大學(xué)數(shù)學(xué)教育改革》,該書指出,數(shù)學(xué)建模的本質(zhì)就是將數(shù)學(xué)中抽象的內(nèi)容進(jìn)行簡(jiǎn)化而成為實(shí)際問(wèn)題,然后通過(guò)參數(shù)和變量之間的規(guī)律來(lái)解決數(shù)學(xué)問(wèn)題,并將解得的結(jié)果進(jìn)行證明和解釋,因此使問(wèn)題得到深化,循環(huán)解決問(wèn)題的過(guò)程。

  二、小學(xué)數(shù)學(xué)建模的定位

  1.定位于兒童的生活經(jīng)驗(yàn)

  兒童是小學(xué)數(shù)學(xué)的主要教學(xué)對(duì)象,因此數(shù)學(xué)問(wèn)題中研究的內(nèi)容復(fù)雜程度要適中,要與兒童的生活和發(fā)展情況相結(jié)合。"數(shù)學(xué)建模"要以兒童為出發(fā)點(diǎn),在數(shù)學(xué)課堂上要多引用發(fā)生在日常生活中的案例,使兒童在數(shù)學(xué)教材上遇到的問(wèn)題與現(xiàn)實(shí)生活中的問(wèn)題相結(jié)合,從而激發(fā)學(xué)生學(xué)習(xí)的積極性,使學(xué)生通過(guò)自身的經(jīng)驗(yàn),積極地感受數(shù)學(xué)模型的作用。同時(shí),小學(xué)數(shù)學(xué)建模要遵循循序漸進(jìn)的原則,既要適合學(xué)生的年齡特征,賦予適當(dāng)?shù)奶魬?zhàn)性;又要照顧兒童發(fā)展的差異性,尊重兒童的個(gè)性,促進(jìn)每一個(gè)學(xué)生在原有的基礎(chǔ)上得到發(fā)展。

  2.定位于兒童的思維方式

  小學(xué)生的特點(diǎn)是年齡小,思維簡(jiǎn)單。因此小學(xué)的數(shù)學(xué)建模必須與小學(xué)生的實(shí)際情況相結(jié)合,循序漸進(jìn)的進(jìn)行,使其與小學(xué)生的認(rèn)知能力相適應(yīng)。

  實(shí)際情況表明,教師要想使學(xué)生能夠積極主動(dòng)的思考問(wèn)題,提高他們將數(shù)學(xué)思維運(yùn)用到實(shí)際生活中的能力,就必須把握好兒童在數(shù)學(xué)建模過(guò)程中的情感、認(rèn)知和思維起點(diǎn)。我們以《常見(jiàn)的數(shù)量關(guān)系》中關(guān)于速度、時(shí)間和路程的教學(xué)為例,有的老師啟發(fā)學(xué)生與二年級(jí)所學(xué)的乘除法相結(jié)合,使乘除法這一知識(shí)點(diǎn)與時(shí)間、速度和路程建立了關(guān)聯(lián),從而使"數(shù)量關(guān)系"與數(shù)學(xué)原型"一乘兩除"結(jié)合起來(lái),并且使學(xué)生利用抽象與類比的思維方法完成了"數(shù)量關(guān)系"的"意義建模",從而創(chuàng)建了完善的認(rèn)知體系。

  三、小學(xué)"數(shù)學(xué)建模"的教學(xué)策略

  1.培育建模意識(shí)

  當(dāng)前的小學(xué)數(shù)學(xué)教材中,大部分內(nèi)容編排的思路都是以建模為基礎(chǔ),其內(nèi)容的開展模式主要是"生活情景到抽象模型,然后到模型驗(yàn)證,最后到模型的運(yùn)用和解釋".培養(yǎng)建模思維的關(guān)鍵是對(duì)教材的解讀是否從建模出發(fā),使教材中的建模思想得到充分的開發(fā)。然后對(duì)教材中比較現(xiàn)實(shí)的問(wèn)題進(jìn)行充分的挖掘,將數(shù)學(xué)化后的實(shí)際問(wèn)題創(chuàng)建模型,最后解決問(wèn)題。教師要提高學(xué)生對(duì)建模的意識(shí)與興趣就要充分挖掘教材,指導(dǎo)學(xué)生去親身體會(huì)、思考溝通、動(dòng)手操作、解決問(wèn)題。其次,通過(guò)引入貼近現(xiàn)實(shí)生活、生產(chǎn)的探索性例題,使學(xué)生了解數(shù)學(xué)是怎樣應(yīng)用于解決這些實(shí)際問(wèn)題的。同時(shí),讓學(xué)生在利用數(shù)學(xué)建模解決實(shí)際問(wèn)題的過(guò)程中理解數(shù)學(xué)的應(yīng)用價(jià)值和社會(huì)功能,不斷增強(qiáng)數(shù)學(xué)建模的意識(shí)。

  2.體驗(yàn)建模過(guò)程

  在數(shù)學(xué)的建模過(guò)程中,要將生活中含有數(shù)學(xué)知識(shí)與規(guī)律的實(shí)際問(wèn)題抽象化,從而建成數(shù)學(xué)模型。然后利用數(shù)學(xué)規(guī)律對(duì)問(wèn)題進(jìn)行推理,解答出數(shù)學(xué)的結(jié)果后再進(jìn)行證明和解釋,從而使實(shí)際問(wèn)題得到合理的解決。我們以解決問(wèn)題的方法為例,使學(xué)生能夠解決題目不是教學(xué)的唯一目的,使學(xué)生通過(guò)對(duì)數(shù)學(xué)問(wèn)題的研究和體驗(yàn)來(lái)提升自己"創(chuàng)建"新模型的能力。使學(xué)生在不斷的提出與解決問(wèn)題的過(guò)程中培養(yǎng)成自主尋找數(shù)學(xué)模型和數(shù)學(xué)觀念的習(xí)慣。如此一來(lái),當(dāng)學(xué)生遇到陌生的問(wèn)題情境,甚至是與數(shù)學(xué)無(wú)關(guān)的實(shí)際問(wèn)題時(shí),都能夠具備"模型"思想,處理問(wèn)題的過(guò)程能具備數(shù)學(xué)家的"模型化"特點(diǎn),從而使"模型思想"影響其生活的各個(gè)方面。

  3.在數(shù)學(xué)建模中促進(jìn)自主性建構(gòu)

  要使"知識(shí)"與"應(yīng)用"得到良好的結(jié)合就必須提高學(xué)生積極構(gòu)建數(shù)學(xué)模型的能力。我們要將數(shù)學(xué)教學(xué)的重點(diǎn)放在對(duì)學(xué)生觀察、整合、提煉"現(xiàn)實(shí)問(wèn)題"的能力培養(yǎng)上來(lái)。教學(xué)過(guò)程中,通過(guò)對(duì)日常問(wèn)題的適當(dāng)修改,使學(xué)生的實(shí)際生活與數(shù)學(xué)相結(jié)合,從而提升學(xué)生發(fā)現(xiàn)和提出問(wèn)題,并通過(guò)創(chuàng)建模型解決問(wèn)題的能力,為學(xué)生提供能夠自主創(chuàng)建模型的條件。

  我們以《比較》這課程內(nèi)容為例,我們通過(guò)"建模"這一教學(xué)方法,培養(yǎng)學(xué)生對(duì)">""<"和"="的掌握與使用,進(jìn)而使學(xué)生明確了解"比較"的真正含義。首先,利用公園或者學(xué)校等地方的蹺蹺板為素材,讓學(xué)生了解自己的哪個(gè)伙伴被壓上去,哪個(gè)伙伴被壓下來(lái);然后讓班級(jí)的.高矮不同的同學(xué)進(jìn)行身高比較。最后將上面這些情景在課堂上通過(guò)多媒體手段展現(xiàn)出來(lái),由于這些情景都是學(xué)生曾親身體驗(yàn)過(guò)的,此時(shí)再叫他們?nèi)プ?重量"或者"高度"的比較,他們就可以輕松的掌握">""<"和"="等符號(hào)。這種將學(xué)生的實(shí)際生活與課堂教學(xué)相結(jié)合的方法,使學(xué)生能夠輕松的創(chuàng)建其數(shù)學(xué)模型,提升他們自主建模的信心。

  四、總結(jié)

  數(shù)學(xué)建模是將實(shí)際生活與數(shù)學(xué)相結(jié)合的有效途徑和方法。學(xué)生在創(chuàng)建數(shù)學(xué)模型的過(guò)程中,其思維方式也得到了鍛煉。小學(xué)階段的教學(xué),其數(shù)學(xué)模型的構(gòu)建應(yīng)當(dāng)以兒童文化觀為基礎(chǔ),其目的主要是培養(yǎng)兒童的建模思想,這也是提升小學(xué)生學(xué)習(xí)數(shù)學(xué)積極性,提升課堂文化氣息的有效方法和途徑。

數(shù)學(xué)建模論文模板10

  一.前期準(zhǔn)備(建模儲(chǔ)備)

  1.工欲善其事,必先利其器。

  各種軟件的成功安裝,團(tuán)隊(duì)成員軟件版本一致性。

  軟件(Excel、matlab、word、latex、WPS等等)熟練掌握。

  2.必要數(shù)學(xué)知識(shí)

  讓你的數(shù)學(xué)知識(shí)足夠讓你進(jìn)行知識(shí)的獲取與獲取知識(shí)后接下去的快速學(xué)習(xí)。

  各種算法。

  3.建模算法與編程知識(shí)(思想的具體實(shí)現(xiàn))

  了解各項(xiàng)算法。

  各種算法以及編程具體實(shí)現(xiàn),提前將代碼準(zhǔn)備好。

  知道何種問(wèn)題用何種算法,編程可以直接拿來(lái)用。

  4.資料獲取能力(文件檢索)

  各種網(wǎng)站與論壇(數(shù)學(xué)中國(guó)、校苑數(shù)模等)的資源的利用。

  (可以建群討論)(注冊(cè)收集體力從而下載東西)

  Google搜索引擎的真正使用方法,資源搜索方法。

  中國(guó)知網(wǎng)等學(xué)術(shù)論文獲取方法。

  谷歌學(xué)術(shù),百度學(xué)術(shù)。

  5.建立模型能力(思想)

  建立模型的能力才是整個(gè)數(shù)學(xué)建模的核心,模型從分析到實(shí)現(xiàn)是需要過(guò)程的。團(tuán)隊(duì)可以一起討論,相信自己,結(jié)合找到的學(xué)術(shù)論文進(jìn)行初步建模構(gòu)想,再搜集資料。

  獲取知識(shí),搜索資料,最好在前人學(xué)術(shù)研究的基礎(chǔ)上加以改進(jìn)。利用好學(xué)術(shù)論文。

  建立模型不是一蹴而就的,團(tuán)隊(duì)分析,最后一人總結(jié)數(shù)學(xué)思想建模,可以分模塊分部建立,有一人編程實(shí)現(xiàn)。

  6.文檔寫作能力(格式)

  充分研究以前優(yōu)秀作文。格式,語(yǔ)言使用。

  對(duì)自己模型的表達(dá)。

  論文010203按時(shí)間,改一次,另存為一次。

  7.對(duì)所參加比賽要求與評(píng)判的了解

  將比賽需要的所有東西準(zhǔn)備好。

  對(duì)時(shí)間的把握。

  對(duì)比賽評(píng)判習(xí)慣的把握。

  提前了解題型,早做準(zhǔn)備。

  參賽隊(duì)?wèi)?yīng)該盡可能多的研讀和實(shí)踐歷年獲獎(jiǎng)?wù)撐募捌渲械哪P秃颓蠼馑惴,并進(jìn)行一次全真模擬訓(xùn)練磨合隊(duì)伍。

  二.人員分工合作

  數(shù)學(xué)員:數(shù)學(xué)方法與思想

  程序員:精通算法的實(shí)現(xiàn),調(diào)試程序

  寫手:論文的實(shí)現(xiàn)

  數(shù)學(xué)模型的組隊(duì)非常重要,三個(gè)人的團(tuán)隊(duì)一定要有分工明確而且互有合作,三個(gè)人都有其各自的特長(zhǎng),這樣在某方面的問(wèn)題的處理上才會(huì)保持高效率。

  三個(gè)人的分工可以分為這幾個(gè)方面:

  1.?dāng)?shù)學(xué)員:

  學(xué)習(xí)過(guò)很多數(shù)模相關(guān)的方法、知識(shí),無(wú)論是對(duì)實(shí)際問(wèn)題還是數(shù)學(xué)理論都有著比較敏感的思維能力,知道一個(gè)問(wèn)題該怎樣一步步經(jīng)過(guò)化簡(jiǎn)而變?yōu)閿?shù)學(xué)問(wèn)題,而在數(shù)學(xué)上又有哪些相關(guān)的方法能夠求解,他可以不會(huì)編程,但是要精通算法,能夠一定程度上幫助程序員想算法,總之,數(shù)學(xué)員要做到的是能夠把一個(gè)問(wèn)題清晰地用數(shù)學(xué)關(guān)系定義,然后給出求解的方向;

  2.程序員:

  負(fù)責(zé)實(shí)現(xiàn)數(shù)學(xué)員的想法,因?yàn)樽鳛閿?shù)學(xué)員,要完成大部分的模型建立工作,因此調(diào)試程序這類工作就必須交給程序員來(lái)分擔(dān)了,一些程序細(xì)節(jié)程序員必須非常明白,需要出圖,出數(shù)據(jù)的地方必須能夠非常迅速地給出。

  3.寫手:

  在全文的寫作中,數(shù)學(xué)員負(fù)責(zé)搭建模型的框架結(jié)構(gòu),程序員負(fù)責(zé)計(jì)算結(jié)果并與數(shù)學(xué)員討論,進(jìn)而形成模型部分的全部?jī)?nèi)容,而寫手要做的。就是在此基礎(chǔ)之上,將所有的圖表,文字以一定的結(jié)構(gòu)形式予以表達(dá),注意寫手時(shí)刻要從評(píng)委,也就是論文閱讀者的角度考慮問(wèn)題,在全文中形成一個(gè)完整地邏輯框架。同時(shí)要做好排版的工作,最終能夠把數(shù)學(xué)員建立的模型和程序員算出的結(jié)果以最清晰的方式體現(xiàn)在論文中。因?yàn)檎撐氖窃u(píng)委能夠唯一看到的成果,所以寫手的水平直接決定了獲獎(jiǎng)的高低,重要性也不言而喻了。三個(gè)人至少都能夠擅長(zhǎng)一方面的'工作,同時(shí)相互之間也有交叉,這樣,不至于在任何一個(gè)環(huán)節(jié)卡殼而沒(méi)有人能夠解決。因?yàn)槊恳豁?xiàng)工作的工作量都比較龐大,因此,在準(zhǔn)備的過(guò)程中就應(yīng)該按照這個(gè)分工去準(zhǔn)備而不要想著通吃。這樣才真正達(dá)到了團(tuán)隊(duì)協(xié)作的效果。

  三.?dāng)?shù)學(xué)建模過(guò)程

  1.看到問(wèn)題、分析問(wèn)題、理解題意。

  2.尋找資料,查找相關(guān)知識(shí)。

  3.思考可使用算法模型,想出問(wèn)題解決思路。

  4.列出模型框架。

  5.進(jìn)行模型與算法的具體實(shí)現(xiàn)過(guò)程。

  6.對(duì)模型的優(yōu)化與檢查。

  7.論文的整理。

  8.摘要論文的批判與檢查。

  9.提交。

  四.對(duì)數(shù)學(xué)建模的理解

  利用數(shù)學(xué)方法解決實(shí)際問(wèn)題,對(duì)數(shù)學(xué)知識(shí)的了解與熟悉,快速查找學(xué)術(shù)知識(shí)并運(yùn)用。

  論文的整理,讓他人理解。

  數(shù)學(xué)好:數(shù)學(xué)思想。

  編程好:調(diào)試程序與算法的實(shí)現(xiàn)。

  整理能力:文檔表述清晰。

  五.我下一步的努力

  1、數(shù)學(xué)模型的了解與掌握:

  《數(shù)學(xué)模型》 姜啟源版

  《數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)》 趙靜版

  (認(rèn)真讀完上述兩本數(shù)學(xué)建模書籍)

  各種網(wǎng)絡(luò)上找到的書籍,關(guān)于算法與模型的簡(jiǎn)單看看。

  2、各種數(shù)學(xué)工具的安裝與使用

  Matlab的安裝與使用

  Excel的進(jìn)一步了解

  Word的進(jìn)一步熟悉

  各種我不知道的數(shù)學(xué)工具:spss,latex……

  3、算法的掌握與實(shí)現(xiàn)

  將看過(guò)算法都整理起來(lái),便于比賽時(shí)直接用。

  4、多看與研究比賽獲獎(jiǎng)?wù)撐?/p>

  研究思想,感受過(guò)程。

  5、研究模板,寫作排版與論文整理方法

  6、萬(wàn)事俱備,自己親身實(shí)踐數(shù)學(xué)建模

數(shù)學(xué)建模論文模板11

  【摘要】高職數(shù)學(xué)建模社團(tuán)活動(dòng)的開展為數(shù)學(xué)建模競(jìng)賽搭建了一個(gè)平臺(tái),是高職數(shù)學(xué)建模競(jìng)賽開展的有力后盾。本文主要分析了數(shù)學(xué)建模社團(tuán)活動(dòng)開展的實(shí)踐與意義,以期更好的在高職院校開展數(shù)學(xué)建模競(jìng)賽活動(dòng)。

  【關(guān)鍵詞】數(shù)學(xué)建模;社團(tuán);創(chuàng)新能力

  高校學(xué)生社團(tuán)是一種具有共同興趣愛(ài)好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂(lè)和學(xué)術(shù)型的活動(dòng)的團(tuán)體。學(xué)生社團(tuán)以其鮮明的開放性、自主性以及多樣性等特點(diǎn),為一些有特長(zhǎng)的學(xué)生提供了廣闊的舞臺(tái),讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進(jìn)其更好的成才。全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會(huì)共同承辦的一個(gè)科技性的賽事,該比賽要通過(guò)數(shù)學(xué)和計(jì)算機(jī)的知識(shí)來(lái)解決實(shí)際生活中的問(wèn)題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊(duì)員是件費(fèi)神的事情,因此,為了更好的為數(shù)學(xué)建模競(jìng)賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團(tuán)“數(shù)學(xué)建模協(xié)會(huì)”也就應(yīng)運(yùn)而生。數(shù)學(xué)建模協(xié)會(huì)的成立,可以更好的為學(xué)生提供一個(gè)展示自己的機(jī)會(huì),可以增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競(jìng)賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會(huì)為例,探討高職數(shù)學(xué)建模社團(tuán)活動(dòng)開展的形式和意義。

  一、數(shù)學(xué)建模社團(tuán)活動(dòng)開展的意義和必要性

  (一)數(shù)學(xué)建模社團(tuán)有利于數(shù)學(xué)建模競(jìng)賽的開展。高職數(shù)學(xué)建模協(xié)會(huì)為數(shù)學(xué)建模競(jìng)賽搭建了一個(gè)平臺(tái),是數(shù)學(xué)建模競(jìng)賽強(qiáng)有力的后盾,數(shù)學(xué)建模競(jìng)賽成績(jī)的取得與這個(gè)平臺(tái)密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團(tuán)的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動(dòng)高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會(huì)起著動(dòng)員宣傳的作用從沒(méi)聽過(guò),到知道,在到熟悉,只有通過(guò)大力宣傳和動(dòng)員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競(jìng)賽中。大學(xué)校園中有許多數(shù)學(xué)愛(ài)好者,他們對(duì)數(shù)學(xué)建模也有一定的認(rèn)識(shí),只要有參加數(shù)學(xué)建模活動(dòng)的愿望的,都可以利用數(shù)學(xué)建模協(xié)會(huì)招新的機(jī)會(huì),加入數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)。將成績(jī)優(yōu)秀的學(xué)生邀請(qǐng)加入數(shù)學(xué)建模協(xié)會(huì),對(duì)進(jìn)一步擴(kuò)大數(shù)學(xué)建模協(xié)會(huì),夯實(shí)數(shù)學(xué)建;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會(huì)起著知識(shí)傳播的作用高職院校學(xué)生在校學(xué)習(xí)時(shí)間較短,學(xué)業(yè)較為繁重,課余時(shí)間較少,數(shù)學(xué)建模培訓(xùn)的時(shí)間不足,無(wú)法讓學(xué)生在短時(shí)期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識(shí)。因此,利用數(shù)學(xué)建模協(xié)會(huì)活動(dòng)可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識(shí)。采用“老帶新”的模式進(jìn)行數(shù)學(xué)建模知識(shí)的普及。通過(guò)制定系統(tǒng)的培訓(xùn)方案,在每年秋季競(jìng)賽后,參加過(guò)競(jìng)賽的同學(xué)對(duì)新入?yún)f(xié)會(huì)的成員可以進(jìn)行初級(jí)培訓(xùn),為今后的競(jìng)賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團(tuán)起著選拔學(xué)生的作用每年數(shù)學(xué)建模競(jìng)賽的隊(duì)員需要通過(guò)校內(nèi)賽等形式進(jìn)行選拔,此時(shí),數(shù)學(xué)建模協(xié)會(huì)就起著校內(nèi)賽命題及選拔隊(duì)員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊(duì)員都是來(lái)自校內(nèi)賽成績(jī)優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計(jì)算機(jī)技術(shù)水平優(yōu)秀的學(xué)生就沒(méi)法參加數(shù)學(xué)建模競(jìng)賽。為確保每一位有能力的學(xué)生都能夠加入到建模競(jìng)賽隊(duì)伍中來(lái),可以通過(guò)校內(nèi)競(jìng)賽與建模協(xié)會(huì)推薦兩者相結(jié)合的方式選拔建模競(jìng)賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競(jìng)賽。(二)數(shù)學(xué)建模社團(tuán)有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團(tuán)屬于專業(yè)的學(xué)術(shù)性社團(tuán),成立的目的是為了參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,數(shù)學(xué)建模社團(tuán)活動(dòng)的趣味性和實(shí)踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競(jìng)賽的熱情。社團(tuán)活動(dòng)中的培訓(xùn)使學(xué)生可以更好的應(yīng)對(duì)競(jìng)賽,取得更好的成績(jī)。另外,競(jìng)賽之余還可以進(jìn)行其他領(lǐng)域的學(xué)術(shù)交流,比如計(jì)算機(jī),經(jīng)濟(jì),工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識(shí),從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進(jìn)行一些創(chuàng)新創(chuàng)業(yè)的活動(dòng),具有更多的實(shí)踐的機(jī)會(huì)。比如,可以利用平時(shí)社團(tuán)所學(xué)的知識(shí),以團(tuán)體的形式進(jìn)行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺(tái)和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進(jìn)行一些微信群講座等等。這樣可以讓學(xué)生真正體會(huì)到數(shù)學(xué)的用處,達(dá)到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的學(xué)術(shù)性社團(tuán),社團(tuán)的組織機(jī)構(gòu)都是學(xué)生在擔(dān)任,社團(tuán)的'活動(dòng)也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時(shí)候社團(tuán)的老成員都可以輔助老師進(jìn)行社團(tuán)的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時(shí)還鍛煉了他們的處事應(yīng)變能力團(tuán)隊(duì)合作的能力,可以說(shuō)提高了學(xué)生的綜合素質(zhì)。

  二、數(shù)學(xué)建模社團(tuán)的活動(dòng)的開展措施———以西安航空職業(yè)技術(shù)學(xué)院為例

  (一)數(shù)學(xué)建模社團(tuán)的管理形式。數(shù)學(xué)建模協(xié)會(huì)作為一個(gè)學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個(gè)管理面”來(lái)進(jìn)行社團(tuán)管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個(gè)主要是通過(guò)“社團(tuán)內(nèi)部進(jìn)行學(xué)術(shù)交流活動(dòng)”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動(dòng)主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請(qǐng)指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報(bào)告。老帶新培訓(xùn)是指社團(tuán)主席團(tuán)成員(一般是參加過(guò)前一年全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽的學(xué)生)為新入社團(tuán)的學(xué)生進(jìn)行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對(duì)他們集訓(xùn)時(shí)的內(nèi)容,這種培訓(xùn)方式可以提升社團(tuán)成員的授課和理解問(wèn)題的能力,對(duì)于在校大學(xué)生來(lái)說(shuō)是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用QQ群,網(wǎng)絡(luò)空間和微信公眾平臺(tái)等開展社團(tuán)成員之間的交流互動(dòng),社團(tuán)宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)每一屆社團(tuán)都有相應(yīng)的QQ群,另外,在20xx年也積極申請(qǐng)了微信平臺(tái),目前的關(guān)注量也在800余人,微信平臺(tái)的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對(duì)大一新生可以更多的取了解數(shù)學(xué)建模,擴(kuò)大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營(yíng)造一種“人人知數(shù)模,人人愛(ài)數(shù)模,人人參與數(shù)模”的良好的教育環(huán)境,使建;顒(dòng)廣泛化、群眾化。3、交流互訪面開展研討會(huì),專家報(bào)告會(huì),社團(tuán)聯(lián)誼會(huì)等交流活動(dòng),既可以豐富數(shù)學(xué)建模社團(tuán)學(xué)生的知識(shí)面,又能促進(jìn)數(shù)學(xué)知識(shí)的理解和吸收,通過(guò)與其他社團(tuán)的聯(lián)誼,豐富了社團(tuán)學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團(tuán)好的管理經(jīng)驗(yàn),促進(jìn)社團(tuán)管理的制度化、規(guī)范化、專業(yè)化,也只有通過(guò)不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個(gè)管理完善,富有成效的學(xué)生社團(tuán)。(二)數(shù)學(xué)建模社團(tuán)的特色活動(dòng)。數(shù)學(xué)建模社團(tuán)在開展學(xué)術(shù)活動(dòng)和輔助教師進(jìn)行競(jìng)賽培訓(xùn)的同時(shí),還不定期的舉行一些活動(dòng),在提高學(xué)生學(xué)習(xí)興趣的同時(shí)也以擴(kuò)大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建;顒(dòng)。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)納新,數(shù)學(xué)建模創(chuàng)新協(xié)會(huì)趣味運(yùn)動(dòng)會(huì),數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識(shí)競(jìng)賽,數(shù)學(xué)建模經(jīng)驗(yàn)交流會(huì),數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團(tuán)活動(dòng)貫穿整個(gè)學(xué)年,不僅可以“由點(diǎn)及面、由淺入深”的對(duì)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽進(jìn)行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團(tuán)變得豐富多彩,成為學(xué)生課后獲取知識(shí)的一種平臺(tái),同時(shí)也是社團(tuán)蓬勃發(fā)展的利器。

  三、結(jié)語(yǔ)

  總之,數(shù)學(xué)建模社團(tuán)活動(dòng)的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動(dòng)了學(xué)生參加學(xué)術(shù)型社團(tuán)的積極性,同時(shí)也是高職院校組織參加數(shù)學(xué)建模競(jìng)賽的強(qiáng)有力的后盾。

  【參考文獻(xiàn)】

 。1]胡建茹,王搖娟.加強(qiáng)專業(yè)社團(tuán)建設(shè)推進(jìn)大學(xué)生創(chuàng)新實(shí)踐能力培養(yǎng)[J].中國(guó)石油大學(xué)學(xué)報(bào):社會(huì)科學(xué)版,20xx(12)

 。2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團(tuán)建設(shè)的探索與實(shí)踐[J].機(jī)械職業(yè)教育,20xx(7)

  [3]李湘玲,王泳興.大學(xué)生社團(tuán)發(fā)展與創(chuàng)新型人才培養(yǎng)互動(dòng)機(jī)制研究:以吉首大學(xué)為例[J].黑龍江教育,20xx(11)

 。4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[J].高等數(shù)學(xué)研究,20xx(4)

  作者:張?zhí)m 單位:西安航空職業(yè)技術(shù)學(xué)院通識(shí)教育學(xué)院

數(shù)學(xué)建模論文模板12

  1高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想應(yīng)用的優(yōu)勢(shì)

  1.1有助于調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣

  在高等數(shù)學(xué)教學(xué)中,如果缺乏正確的認(rèn)識(shí)與定位,就會(huì)致使學(xué)生學(xué)習(xí)動(dòng)機(jī)不明確,學(xué)習(xí)積極性較低,在實(shí)際解題中,無(wú)法有效拓展思路,缺乏自主解決問(wèn)題的能力。在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,可以讓學(xué)生對(duì)高等數(shù)學(xué)進(jìn)行重新的認(rèn)識(shí)與定位,準(zhǔn)確掌握有關(guān)概念、定理知識(shí),并且將其應(yīng)用在實(shí)際工作當(dāng)中。與純理論教學(xué)相較而言,在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,可以更好的調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣與積極性,讓學(xué)生可以自主學(xué)習(xí)相關(guān)知識(shí),進(jìn)而提高課堂教學(xué)質(zhì)量。2.2有助于提高學(xué)生的數(shù)學(xué)素質(zhì)隨著科學(xué)技術(shù)水平的不斷提高,社會(huì)對(duì)人才的要求越來(lái)越高,大學(xué)生不僅要了解專業(yè)知識(shí),還要具有分析、解決問(wèn)題的能力,同時(shí)還要具備一定的組織管理能力、實(shí)際操作能力等,這樣才可以更好的滿足工作需求。高等數(shù)學(xué)具有嚴(yán)密的邏輯性、較強(qiáng)的抽象性,符合時(shí)代發(fā)展的需求,滿足了社會(huì)發(fā)展對(duì)新型人才的需求。在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,不僅可以提高學(xué)生的數(shù)學(xué)素質(zhì),還可以增強(qiáng)學(xué)生的綜合素質(zhì)。同時(shí),在高等數(shù)學(xué)教學(xué)中,應(yīng)用數(shù)學(xué)建模思想,可以加強(qiáng)學(xué)生理論和實(shí)踐的結(jié)合,通過(guò)數(shù)學(xué)模型的構(gòu)建,可以培養(yǎng)學(xué)生的數(shù)學(xué)運(yùn)用能力與實(shí)踐能力,進(jìn)而提高學(xué)生的綜合素質(zhì)。

  1.3有助于培養(yǎng)學(xué)生的創(chuàng)新能力

  和傳統(tǒng)高等數(shù)學(xué)純理論教學(xué)不同,數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的時(shí)候,更加重視實(shí)際問(wèn)題的解決,通過(guò)數(shù)學(xué)模型的構(gòu)建,解決實(shí)際問(wèn)題,有助于培養(yǎng)學(xué)生的創(chuàng)新精神,在實(shí)際運(yùn)用中提高學(xué)生的創(chuàng)新能力。數(shù)學(xué)建模活動(dòng)需要學(xué)生參與實(shí)際問(wèn)題的分析與解決,完成數(shù)學(xué)模型的求解。在實(shí)際教學(xué)中,學(xué)生具有充足的思考空間,為提高學(xué)生的創(chuàng)新意識(shí)奠定了堅(jiān)實(shí)的基礎(chǔ),同時(shí),充分發(fā)揮了學(xué)生的自身優(yōu)勢(shì),挖掘了學(xué)生學(xué)習(xí)的潛能,有效解決了實(shí)際問(wèn)題。在很大程度上提高了學(xué)生數(shù)學(xué)運(yùn)用能力,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí),增強(qiáng)了學(xué)生的創(chuàng)新能力。

  2高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想應(yīng)用的原則

  在進(jìn)行數(shù)學(xué)建模的時(shí)候,一定要保證實(shí)例簡(jiǎn)明易懂,結(jié)合日常生活的實(shí)際情況,創(chuàng)設(shè)相應(yīng)的教學(xué)情境,激發(fā)學(xué)生學(xué)習(xí)的興趣。從易懂的實(shí)際問(wèn)題出發(fā),由淺到深的展開教學(xué)內(nèi)容,通過(guò)建模思想的滲透,讓學(xué)生進(jìn)行認(rèn)真的思考,進(jìn)而掌握一些學(xué)習(xí)的方法與手段。在實(shí)際教學(xué)中,不要強(qiáng)求統(tǒng)一,針對(duì)不同的專業(yè)、院校,展開因材施教,加強(qiáng)與教學(xué)研究的結(jié)合,不斷發(fā)現(xiàn)問(wèn)題,并且予以改進(jìn),達(dá)到預(yù)期的教學(xué)效果。教師需要編寫一些可以融入的教學(xué)單元,為相關(guān)課程教學(xué)提供有效的數(shù)學(xué)建模素材,促進(jìn)教師與學(xué)生的學(xué)習(xí)與研究,培養(yǎng)個(gè)人的教學(xué)風(fēng)格。除此之外,在實(shí)際教學(xué)中,可以將教學(xué)重點(diǎn)放在大一的第一學(xué)期,加強(qiáng)教師引導(dǎo)與教育,根據(jù)實(shí)際問(wèn)題,重視微積分概念、思想、方法的學(xué)習(xí),結(jié)合數(shù)學(xué)建模思想,讓學(xué)生充分認(rèn)識(shí)到高等數(shù)學(xué)的重要性,進(jìn)而展開相關(guān)學(xué)習(xí)。

  3高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的有效方法

  3.1轉(zhuǎn)變教學(xué)觀念

  在高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,需要重視教學(xué)觀念的轉(zhuǎn)變,向?qū)W生傳授數(shù)學(xué)模型思想,提高學(xué)生數(shù)學(xué)建模的意識(shí)。在有關(guān)概念、公式等理論教學(xué)中,教師不僅要對(duì)知識(shí)的來(lái)龍去脈進(jìn)行講解,還要讓學(xué)生進(jìn)行親身體會(huì),進(jìn)而在體會(huì)中不斷提高學(xué)習(xí)成績(jī)。比如,37支球隊(duì)進(jìn)行淘汰賽,每輪比賽出場(chǎng)2支球隊(duì),勝利的一方進(jìn)入下一輪,直到比賽結(jié)束。請(qǐng)問(wèn):在這一過(guò)程中,一共需要進(jìn)行多少場(chǎng)比賽?一般的解題方法就是預(yù)留1支球隊(duì),其它球隊(duì)進(jìn)行淘汰賽,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在實(shí)際教學(xué)中,教師可以轉(zhuǎn)變一下教學(xué)思路,通過(guò)逆向思維的形式解答,即,每場(chǎng)比賽淘汰1支球隊(duì),那么就需要淘汰36支球隊(duì),進(jìn)而比賽場(chǎng)次為36。通過(guò)這樣的方式,讓學(xué)生在練習(xí)過(guò)程中,加深對(duì)數(shù)學(xué)建模思想的認(rèn)識(shí),提高高等數(shù)學(xué)教學(xué)的有效性。

  3.2高等數(shù)學(xué)概念教學(xué)中的應(yīng)用

  在高等數(shù)學(xué)概念教學(xué)中,相較于初高中數(shù)學(xué)概念,更加抽象,如導(dǎo)數(shù)、定積分等。在對(duì)這些概念展開學(xué)習(xí)的.時(shí)候,學(xué)生一般都比較重視這些概念的來(lái)源與應(yīng)用,希望可以在實(shí)際問(wèn)題中找出這些概念的原型。實(shí)際上,在高等數(shù)學(xué)微積分概念中,其形成本身就具有一定的數(shù)學(xué)建模思想。為此,在導(dǎo)入數(shù)學(xué)概念的時(shí)候,借助數(shù)學(xué)建模思想,完成教學(xué)內(nèi)容是非常可行的。每引出—個(gè)新概念,都應(yīng)有—個(gè)刺激學(xué)生學(xué)習(xí)欲的實(shí)例,說(shuō)明該內(nèi)容的應(yīng)用性。在高等數(shù)學(xué)概念教學(xué)中,通過(guò)實(shí)際問(wèn)題情境的創(chuàng)設(shè)與導(dǎo)入,可以讓學(xué)生了解概念形成的過(guò)程,進(jìn)而運(yùn)用抽象知識(shí)解決概念形成過(guò)程,引出數(shù)學(xué)概念,構(gòu)建數(shù)學(xué)模型,加強(qiáng)對(duì)實(shí)際問(wèn)題的解決。比如,在學(xué)習(xí)定積分概念的時(shí)候,可以設(shè)計(jì)以下教學(xué)過(guò)程:首先,提出問(wèn)題。怎樣求勻變速直線運(yùn)動(dòng)路程?怎樣計(jì)算不規(guī)則圖形的面積?等等。其次,分析問(wèn)題。如果速度是不變的,那么路程=速度×?xí)r間。問(wèn)題是這里的速度不是一個(gè)常數(shù),為此,上述公式不能用。最后,解決問(wèn)題。將時(shí)間段分成很多的小區(qū)間,在時(shí)間段分割足夠小的情況下,因?yàn)樗俣茸兓癁檫B續(xù)的,可以將各小區(qū)間的速度看成是勻速的,也就是說(shuō),將小區(qū)間內(nèi)速度當(dāng)成是常數(shù),用這一小區(qū)間的時(shí)間乘以速度,就可以計(jì)算器路程,將所有小區(qū)間的路程加在一起,就是總路程,要想得到精確值,就要將時(shí)間段進(jìn)行無(wú)限的細(xì)化。使每個(gè)小區(qū)間都趨于零,這樣所有小區(qū)間路程之和就是所求路程。針對(duì)問(wèn)題二而言,也可以將其轉(zhuǎn)變成一個(gè)和式的極限。這兩個(gè)問(wèn)題都可以轉(zhuǎn)變成和式極限,拋開實(shí)際問(wèn)題,可以將和式極限值稱之為函數(shù)在區(qū)間上的定積分,進(jìn)而得出定積分的概念。解決問(wèn)題的過(guò)程就是構(gòu)建數(shù)學(xué)模型的過(guò)程,通過(guò)教學(xué)活動(dòng),將數(shù)學(xué)知識(shí)和實(shí)際問(wèn)題進(jìn)行聯(lián)系,提高學(xué)生學(xué)習(xí)的興趣與積極性,實(shí)現(xiàn)預(yù)期的教學(xué)效果。

  3.3高等數(shù)學(xué)應(yīng)用問(wèn)題教學(xué)中的應(yīng)用

  對(duì)于教材中實(shí)際應(yīng)用問(wèn)題比較少的情況而言,可以在實(shí)際教學(xué)中挑選一些實(shí)際應(yīng)用案例,構(gòu)建數(shù)學(xué)模型予以示范。在應(yīng)用問(wèn)題教學(xué)中應(yīng)用數(shù)學(xué)建模思想,可以將數(shù)學(xué)知識(shí)與實(shí)際問(wèn)題進(jìn)行結(jié)合,這樣不僅可以提高數(shù)學(xué)知識(shí)的應(yīng)用性,還可以提高學(xué)生的應(yīng)用意識(shí),并且在填補(bǔ)數(shù)學(xué)理論和應(yīng)用的方面發(fā)揮了重要作用。對(duì)實(shí)際問(wèn)題予以建模,可以從應(yīng)用角度分析數(shù)學(xué)問(wèn)題,強(qiáng)化數(shù)學(xué)知識(shí)的運(yùn)用。比如,微元法作為高等數(shù)學(xué)中最為重要、最為基礎(chǔ)的思想與方法,是高等數(shù)學(xué)普遍應(yīng)用的重要手段,也是利用微積分解決實(shí)際問(wèn)題,構(gòu)建數(shù)學(xué)模型的重要保障。為此,在高等數(shù)學(xué)教學(xué)中,一定要將其貫穿教學(xué)活動(dòng)的始終。在實(shí)際教學(xué)中,教師可以根據(jù)生命科學(xué)、經(jīng)濟(jì)學(xué)、物理學(xué)等實(shí)際案例,加深學(xué)生對(duì)有關(guān)知識(shí)歷史的了解,提高學(xué)生對(duì)有關(guān)知識(shí)的理解,培養(yǎng)學(xué)生的數(shù)學(xué)建模意識(shí)。又比如,在講解導(dǎo)數(shù)應(yīng)用知識(shí)的時(shí)候,教師可以適當(dāng)引入切線斜率、瞬時(shí)速度、邊際成本等案例;在講解極值問(wèn)題的時(shí)候,可以適當(dāng)引入征稅、造價(jià)最低等案例。這樣不僅可以激發(fā)學(xué)生學(xué)習(xí)的興趣與積極性,還可以創(chuàng)設(shè)良好的教學(xué)氛圍,對(duì)提高課堂教學(xué)效果有著十分重要的意義。

  4高等數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想的注意事項(xiàng)

  4.1避免“題海戰(zhàn)術(shù)”

  數(shù)學(xué)是一個(gè)系統(tǒng)學(xué)科,需要從頭開始教學(xué),為此,教師一定要注意循序漸進(jìn)。首先,在教學(xué)過(guò)程中,教師可以從教材出發(fā),對(duì)概念、定理等進(jìn)行講解,讓學(xué)生進(jìn)行掌握與運(yùn)用,轉(zhuǎn)變教學(xué)模式,讓學(xué)生牢記教材知識(shí)。其次,慎重選擇例題練習(xí),避免題海戰(zhàn)術(shù),培養(yǎng)學(xué)生的數(shù)學(xué)建模思想,逐漸提高學(xué)生的數(shù)學(xué)素質(zhì)。

  4.2強(qiáng)調(diào)學(xué)生的獨(dú)立思考

  在以往高等數(shù)學(xué)教學(xué)中,均是采用“填鴨式”的教學(xué)模式,不管學(xué)生是否能夠接受,一味的講解教材知識(shí),不重視學(xué)生數(shù)學(xué)建模思想的培養(yǎng)。目前,在教學(xué)過(guò)程中,教師一定要強(qiáng)調(diào)學(xué)生獨(dú)立思考能力的培養(yǎng),通過(guò)數(shù)學(xué)模型的構(gòu)建,激發(fā)學(xué)生的求知欲與興趣,明確學(xué)習(xí)目標(biāo),培養(yǎng)學(xué)生的數(shù)學(xué)思維,進(jìn)而全面滲透數(shù)學(xué)建模思想,提高學(xué)生的數(shù)學(xué)素質(zhì)。

  4.3注意恐懼心理的消除

  在高等數(shù)學(xué)教學(xué)中,注意消除學(xué)生學(xué)習(xí)的恐懼心理及反感,提高課堂教學(xué)效果。在實(shí)際教學(xué)過(guò)程中,培養(yǎng)學(xué)生勇于面對(duì)錯(cuò)誤的品質(zhì),讓學(xué)生認(rèn)識(shí)到錯(cuò)誤并不可怕,可怕地是無(wú)法改正錯(cuò)誤,為此,一定要提高學(xué)生的抗打擊能力,幫助學(xué)生樹立學(xué)習(xí)的自信心,進(jìn)而展開有效的學(xué)習(xí)。學(xué)習(xí)是一個(gè)需要不斷鞏固和加強(qiáng)的過(guò)程,在此過(guò)程中,必須加強(qiáng)教師的監(jiān)督作用,讓學(xué)生可以積極改正自身錯(cuò)誤,并且不會(huì)在同一個(gè)問(wèn)題上犯錯(cuò)誤,提高學(xué)生總結(jié)與反思的能力,在學(xué)習(xí)過(guò)程中形成數(shù)學(xué)思想,進(jìn)而不斷提高自身的數(shù)學(xué)成績(jī)。

  5結(jié)語(yǔ)

  總而言之,高等數(shù)學(xué)課堂教學(xué)是培養(yǎng)學(xué)生數(shù)學(xué)品質(zhì)的主要場(chǎng)所之一,通過(guò)高等數(shù)學(xué)教學(xué)和數(shù)學(xué)建模思想的結(jié)合,可以加深學(xué)生對(duì)高等數(shù)學(xué)知識(shí)的理解,進(jìn)而可以提高學(xué)生對(duì)高等數(shù)學(xué)知識(shí)的運(yùn)用能力。目前,在高等數(shù)學(xué)教學(xué)中,一定要重視數(shù)學(xué)建模思想的融入,改進(jìn)教學(xué)模式,促使教學(xué)內(nèi)容的全面展開,完成預(yù)期的教學(xué)任務(wù),提高學(xué)生的數(shù)學(xué)水平。

數(shù)學(xué)建模論文模板13

  1明確概念,了解內(nèi)涵

  我們所說(shuō)的數(shù)學(xué)模型指的是用精準(zhǔn)的數(shù)學(xué)語(yǔ)言去模擬和描述實(shí)際生活中的空間形式、數(shù)量關(guān)系等,其主要特點(diǎn)就是運(yùn)用數(shù)學(xué)語(yǔ)言將客觀現(xiàn)象或者事物的特點(diǎn)、主要關(guān)系表述出來(lái),使之成為一種具體的數(shù)學(xué)結(jié)構(gòu)。例如,小學(xué)數(shù)學(xué)問(wèn)題中“5棵白菜與2棵白菜堆起來(lái)是多少棵”、“5只羊與2只羊加在一起是多少只”這樣問(wèn)“一共有多少”的問(wèn)題有很多,如果每次都一遍遍數(shù)太麻煩,于是運(yùn)用加法數(shù)學(xué)模型可以解決很多的類似問(wèn)題。同時(shí),當(dāng)許多相同的數(shù)加在一起時(shí),則可以運(yùn)用乘法數(shù)學(xué)模型。又如,“小芳家的儲(chǔ)藏室長(zhǎng)16分米、寬12分米,如果使用邊長(zhǎng)為整分米數(shù)的正方形瓷磚來(lái)鋪設(shè)儲(chǔ)藏室地面(使用瓷磚都是整塊的),邊長(zhǎng)為多少分米的瓷磚合適?其最大邊長(zhǎng)是幾分米?”當(dāng)小學(xué)生面對(duì)這樣的問(wèn)題時(shí),也可以運(yùn)用數(shù)學(xué)模型來(lái)解決。在小學(xué)數(shù)學(xué)建模教學(xué)過(guò)程中,不少人認(rèn)為建模是學(xué)者、專家的事情,作為小學(xué)生來(lái)說(shuō)只能運(yùn)用模型或者找一個(gè)生活原型來(lái)加深對(duì)數(shù)學(xué)模型的認(rèn)識(shí)和理解,而無(wú)法做到創(chuàng)建數(shù)學(xué)模型。然而筆者不這么認(rèn)為,其原因主要有:第一,小學(xué)生也有創(chuàng)建數(shù)學(xué)模型的可能與機(jī)會(huì);第二,一旦學(xué)生面臨實(shí)際問(wèn)題時(shí),可能會(huì)出現(xiàn)沒(méi)有現(xiàn)成的模型來(lái)套用的情況,因此學(xué)生自己必須通過(guò)探索研究,找到適合的數(shù)學(xué)模型,從而解決問(wèn)題。此外,在小學(xué)數(shù)學(xué)建模的教學(xué)過(guò)程中,還需要依據(jù)不同階段的學(xué)生特點(diǎn),對(duì)其提出不同的要求,具體來(lái)說(shuō)主要分為以下幾個(gè)階段:第一,學(xué)生以具體形象的思維主,此時(shí)較難掌握建模的方法,因此教師必須逐步培養(yǎng)其建模思維,逐步讓學(xué)生運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決生活中的實(shí)際問(wèn)題;第二,學(xué)生從具體形象思維向抽象邏輯思維過(guò)渡,此時(shí)教師應(yīng)讓學(xué)生充分感受到數(shù)學(xué)建模的過(guò)程,并逐步掌握建模要領(lǐng),提升其運(yùn)用建模知識(shí)解決實(shí)際問(wèn)題的能力。

  2體現(xiàn)過(guò)程,循序漸進(jìn)

  第一,準(zhǔn)備模型,豐富問(wèn)題情境,激活已有經(jīng)驗(yàn)。眾所周知,模型的建立離不開具體的現(xiàn)實(shí)情境,因此只有對(duì)問(wèn)題的情境有了充分的認(rèn)識(shí),才能有效建模。因此,作為教師必須要善于開發(fā)學(xué)生豐富問(wèn)題背景的能力,充分利用身邊的生活素材來(lái)創(chuàng)建與實(shí)際生活相符的生活情境,從而為創(chuàng)建模型提供豐富的體驗(yàn)。比如在《確定起跑線》一課的教學(xué)過(guò)程中,某教室先播放了400米賽跑的片段,一一展示了跑道的整體狀況、運(yùn)動(dòng)員起跑瞬間、比賽過(guò)程及最后的沖刺等情況?赐曛,學(xué)生會(huì)產(chǎn)生許多疑問(wèn):為什么運(yùn)動(dòng)員不在同一起跑線上?為什么跑彎道時(shí),內(nèi)道運(yùn)動(dòng)員能夠超過(guò)外道運(yùn)動(dòng)員?然后學(xué)生就會(huì)提取相關(guān)的信息,比如:跑道是有彎道和直道兩部分組成,有著相同的終點(diǎn),外道比內(nèi)道長(zhǎng),因此起跑線也就不同。此時(shí)教師需要做的就是用課件對(duì)學(xué)生的這些問(wèn)題及答案一一予以證實(shí)。這種運(yùn)用生活中熟悉的事物充分引入課堂教學(xué)內(nèi)容中,以情境的方式展示給學(xué)生的方式,對(duì)激活學(xué)生現(xiàn)有的生活經(jīng)驗(yàn)有著較大的幫助,學(xué)生有了豐富的背景作依賴,就能更好的解決本課的數(shù)學(xué)模型問(wèn)題,即“相鄰起跑線的距離差=直徑差×π”。

  第二,假設(shè)模型,把握本質(zhì)特征,提出合理假設(shè)。在小學(xué)數(shù)學(xué)建模的教學(xué)過(guò)程中,可依據(jù)建模的目的'及建模對(duì)象的特征來(lái)觀察、分析、抽象、概括實(shí)際的數(shù)學(xué)問(wèn)題,并用準(zhǔn)確的數(shù)學(xué)語(yǔ)言來(lái)提出合理的假設(shè),這一點(diǎn)很關(guān)鍵。此外,這一過(guò)程中還要求學(xué)生能夠善于分別問(wèn)題的主次方面,為建模提供正確的方向。

  第三,建構(gòu)模型,合理選擇策略,親歷建模過(guò)程。在數(shù)學(xué)建模過(guò)程中,策略選擇十分利則會(huì)對(duì)建模過(guò)程產(chǎn)生直接的影響。要知道,合適的策略能夠幫助學(xué)生精準(zhǔn)抓住問(wèn)題的實(shí)質(zhì),因此作為教師而言,應(yīng)立足與學(xué)生的認(rèn)知特征和認(rèn)知起點(diǎn),充分讓學(xué)生親歷運(yùn)用合適策略進(jìn)行建模的整個(gè)過(guò)程。

  第四,應(yīng)用模型,回歸實(shí)際問(wèn)題,拓展模型應(yīng)用。大家都知道,建模的目的就是為了更好地對(duì)社會(huì)現(xiàn)象及自然現(xiàn)象進(jìn)行描述,為此,建立數(shù)學(xué)模型的終極目的還是要回歸實(shí)際問(wèn)題,從而更好的認(rèn)識(shí)自然,改造自然。此外,在數(shù)學(xué)建模過(guò)程中還應(yīng)將模型有效的還原成具體或者直觀的數(shù)學(xué)現(xiàn)實(shí),并教會(huì)學(xué)生利用建模過(guò)程中所運(yùn)用的策略和方法來(lái)解決其他問(wèn)題,只有這樣數(shù)學(xué)建模教學(xué)才能走得更遠(yuǎn)。

  3針對(duì)學(xué)情,把準(zhǔn)目標(biāo)

  第一,正確處理數(shù)學(xué)知識(shí)與小學(xué)生認(rèn)知水平的關(guān)系。小學(xué)階段,學(xué)生的邏輯思維與感性經(jīng)驗(yàn)有著較為密切的聯(lián)系,有著明顯的形象性。因此,需要密切聯(lián)系生活實(shí)際進(jìn)行數(shù)學(xué)建模教學(xué),同時(shí)還要符合小學(xué)生的心理發(fā)展規(guī)律及認(rèn)知特征,并逐步向小學(xué)生滲透建模的思想,培養(yǎng)其建模能力。

  第二,正確定位建模的教學(xué)定位。對(duì)此,我們必須認(rèn)識(shí)到,學(xué)生在學(xué)習(xí)數(shù)學(xué)建模方法的過(guò)程是一個(gè)不斷深化、不斷積累的過(guò)程。作為教師,應(yīng)在教學(xué)實(shí)踐中充分結(jié)合數(shù)學(xué)知識(shí),反復(fù)對(duì)建模方法加以滲透,并幫助學(xué)生正確理解題意、解決問(wèn)題,讓學(xué)生充分感受建模過(guò)程的重要意義。

  第三,正確處理建模教學(xué)的兩面性。具體來(lái)說(shuō),主要表現(xiàn)為以下兩點(diǎn):一是形象、直觀、簡(jiǎn)潔的一面,其對(duì)學(xué)生理解、掌握及運(yùn)用相關(guān)的數(shù)學(xué)知識(shí)解決問(wèn)題有著積極的作用;二是固定、模式化的一面又極大的限制了學(xué)生的思維。因此,在數(shù)學(xué)建模教學(xué)過(guò)程中,作為教師應(yīng)時(shí)刻注意把握好形象、直觀、簡(jiǎn)潔的一面,盡可能避免解決問(wèn)題的模式化、固定化。

數(shù)學(xué)建模論文模板14

  一、數(shù)學(xué)教材設(shè)計(jì)存在缺陷

  現(xiàn)行高中數(shù)學(xué)教材將數(shù)學(xué)建模內(nèi)容散布于各數(shù)學(xué)知識(shí)教學(xué)單元內(nèi)容之中。此種課程設(shè)計(jì)固然便于學(xué)生及時(shí)運(yùn)用所學(xué)數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,但卻存在諸多弊端。將數(shù)學(xué)建模內(nèi)容分置于各數(shù)學(xué)知識(shí)教學(xué)單元的課程設(shè)計(jì)遮蔽了數(shù)學(xué)建模內(nèi)容之間所固有的內(nèi)在聯(lián)系,致使教師難以清晰地把握高中數(shù)學(xué)建模課程內(nèi)容的完整脈絡(luò),難以準(zhǔn)確地掌握高中數(shù)學(xué)建模課程內(nèi)容的總體教學(xué)要求,難以有效地實(shí)施高中數(shù)學(xué)建模課程內(nèi)容的整體性教學(xué)。而學(xué)生在理解和處理數(shù)學(xué)知識(shí)教學(xué)內(nèi)容單元中的具體數(shù)學(xué)建模問(wèn)題時(shí),既易受到應(yīng)運(yùn)用何種數(shù)學(xué)知識(shí)與方法的暗示,也會(huì)制約其綜合運(yùn)用數(shù)學(xué)知識(shí)方法解決現(xiàn)實(shí)問(wèn)題。從而勢(shì)必影響學(xué)生運(yùn)用數(shù)學(xué)知識(shí)方法建立數(shù)學(xué)模型的靈活性與遷移性,降低數(shù)學(xué)建模學(xué)習(xí)的認(rèn)知彈性。

  二、高中數(shù)學(xué)建模課程師資不足

  許多高中數(shù)學(xué)教師缺少數(shù)學(xué)建模的理論熏陶和實(shí)踐訓(xùn)練,致使其數(shù)學(xué)應(yīng)用意識(shí)比較淡漠,其數(shù)學(xué)建模能力相對(duì)不足,從而制約了高中數(shù)學(xué)建模教學(xué)的效果。高中數(shù)學(xué)教師所普遍存在的上述認(rèn)識(shí)偏差、實(shí)踐誤區(qū)以及應(yīng)用意識(shí)與建模能力方面的欠缺,嚴(yán)重阻礙了高中數(shù)學(xué)建模課程目標(biāo)的順利實(shí)現(xiàn)。

  三、學(xué)生學(xué)習(xí)數(shù)學(xué)建模存在困難

  相當(dāng)多數(shù)高中學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)建模能力令人擔(dān)憂。普遍表現(xiàn)為:難以對(duì)現(xiàn)實(shí)情境進(jìn)行深層表征、要素提取與問(wèn)題歸結(jié);難以對(duì)現(xiàn)實(shí)問(wèn)題所蘊(yùn)涵的'數(shù)據(jù)進(jìn)行充分挖掘、深邃洞察與有效處理;難以對(duì)現(xiàn)實(shí)問(wèn)題作出適當(dāng)假設(shè);難以對(duì)現(xiàn)實(shí)問(wèn)題進(jìn)行模型構(gòu)建;難以對(duì)數(shù)學(xué)建模結(jié)果進(jìn)行有效檢驗(yàn)與合理解釋等。

  1.編寫?yīng)毩⒊蓛?cè)的高中數(shù)學(xué)建模教材。將高中數(shù)學(xué)建模內(nèi)容集中編寫為獨(dú)立成冊(cè)的高中數(shù)學(xué)建模教材。系統(tǒng)介紹數(shù)學(xué)建模的基本概念、步驟與方法并積極吸納豐富的數(shù)學(xué)建模素材且對(duì)典型的數(shù)學(xué)建模問(wèn)題依步驟、分層次解析。

  2.加強(qiáng)高中數(shù)學(xué)建模專題的師資培訓(xùn)。

  高中數(shù)學(xué)教師是影響高中數(shù)學(xué)建模課程實(shí)施的關(guān)鍵因素。他們對(duì)數(shù)學(xué)建模的內(nèi)涵及其教育價(jià)值的理解、所具有的數(shù)學(xué)應(yīng)用意識(shí)和數(shù)學(xué)建模能力水平等均會(huì)在某種程度上影響高中數(shù)學(xué)建模教學(xué)的開展與效果。目前高中數(shù)學(xué)建模師資尚難完全勝任高中數(shù)學(xué)建模課程的教學(xué),絕大多數(shù)高中數(shù)學(xué)教師在其所參加的新課程培訓(xùn)中并未涉及數(shù)學(xué)建模及其教學(xué)內(nèi)容。因此應(yīng)有計(jì)劃地組織實(shí)施針對(duì)高中數(shù)學(xué)建模專題的教師培訓(xùn)。

  3.探索高中學(xué)生數(shù)學(xué)建模的認(rèn)知規(guī)律。

  數(shù)學(xué)建模是需要學(xué)生深度參與的一項(xiàng)較為復(fù)雜的認(rèn)知活動(dòng)過(guò)程。在數(shù)學(xué)建模實(shí)踐中,多數(shù)學(xué)生確實(shí)遇到了較大的困難與挑戰(zhàn),需要教師的科學(xué)指導(dǎo),這就要求教師必須以深刻把握學(xué)生數(shù)學(xué)建模的認(rèn)知機(jī)制與學(xué)習(xí)規(guī)律為前提。

數(shù)學(xué)建模論文模板15

  一、引言

  隨著我國(guó)高等教育的發(fā)展,高校招生規(guī)模越來(lái)越大,而生源質(zhì)量較低,特別是獨(dú)立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認(rèn)為理論性太強(qiáng),與實(shí)際脫節(jié)嚴(yán)重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實(shí)際問(wèn)題的能力,所以,進(jìn)行數(shù)學(xué)教學(xué)改革勢(shì)在必行。數(shù)學(xué)建?膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,通過(guò)數(shù)模方法對(duì)實(shí)際問(wèn)題進(jìn)行巧妙處理,讓學(xué)生體會(huì)到數(shù)學(xué)不僅能傳播理論知識(shí)和求解一些數(shù)學(xué)問(wèn)題,還可將其應(yīng)用到實(shí)際問(wèn)題中,讓學(xué)生看到一些實(shí)際模型的來(lái)龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個(gè)極好載體,而且能充分考驗(yàn)學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟(jì)的團(tuán)隊(duì)合作精神和協(xié)調(diào)組織能力,以及誠(chéng)信意識(shí)和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團(tuán)隊(duì)合作精神對(duì)于獨(dú)立學(xué)院學(xué)生將來(lái)進(jìn)入社會(huì)十分重要,這也是衡量獨(dú)立學(xué)院辦學(xué)成功與否的一個(gè)方面。因此,獨(dú)立學(xué)院的人才培養(yǎng)目標(biāo)定位,既要達(dá)到本科生應(yīng)具備的理論基礎(chǔ),又要有相對(duì)突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨(dú)立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。

  二、數(shù)學(xué)模型融入數(shù)學(xué)課堂教學(xué)的必要性

 。ㄒ唬┤瞬排囵B(yǎng)創(chuàng)新的需要

  根據(jù)獨(dú)立學(xué)院人才培養(yǎng)目標(biāo)和實(shí)際情況,有針對(duì)性的加大基礎(chǔ)課和實(shí)踐環(huán)節(jié)教學(xué)的比重,側(cè)重于實(shí)踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實(shí)驗(yàn)、實(shí)踐教學(xué)內(nèi)容,加強(qiáng)與社會(huì)實(shí)體的聯(lián)系。力求培養(yǎng)出具有實(shí)際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個(gè)實(shí)際問(wèn)題,對(duì)其作出一些必要的簡(jiǎn)化與假設(shè),將其轉(zhuǎn)化成一個(gè)數(shù)學(xué)問(wèn)題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問(wèn)題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實(shí)際問(wèn)題并接受客觀實(shí)際的檢驗(yàn)。數(shù)學(xué)建模能彌補(bǔ)傳統(tǒng)數(shù)學(xué)教學(xué)在實(shí)際應(yīng)用方面的不足,促進(jìn)數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的.更新。數(shù)學(xué)建模有助于調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,在計(jì)算機(jī)應(yīng)用能力、實(shí)踐能力和創(chuàng)新意識(shí)的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來(lái)能更好地適應(yīng)工作崗位。

 。ǘ└咝=虒W(xué)改革的需要

  當(dāng)今社會(huì)信息高度發(fā)達(dá),競(jìng)爭(zhēng)日益激烈,必須具備一定的創(chuàng)新意識(shí)和創(chuàng)新能力,否則很難適應(yīng)社會(huì)信息時(shí)代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時(shí)間都集中學(xué)習(xí)書本知識(shí),很少有機(jī)會(huì)接觸社會(huì),也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長(zhǎng)期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動(dòng)性,會(huì)聽從而不會(huì)質(zhì)疑,更不會(huì)形成開創(chuàng)性的觀點(diǎn),很難適應(yīng)企事業(yè)單位動(dòng)態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對(duì)獨(dú)立學(xué)院的學(xué)生來(lái)說(shuō),學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時(shí)的條件非常相近,是一次非常好的鍛煉,學(xué)生通過(guò)自主的學(xué)習(xí),把實(shí)際的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動(dòng)手能力的提高,這也正是獨(dú)立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。

 。ㄈ⿲W(xué)生參加數(shù)學(xué)建模競(jìng)賽的需要

  獨(dú)立學(xué)院學(xué)生思維活躍,且比較注重個(gè)人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競(jìng)賽來(lái)提高自己。全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競(jìng)賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對(duì)數(shù)學(xué)公式提起了興趣,還有助于獨(dú)立學(xué)院學(xué)生在全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽中取得優(yōu)異成績(jī)。

  三、結(jié)語(yǔ)

  高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識(shí),培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實(shí)現(xiàn)提高學(xué)生綜合分析問(wèn)題能力的最終目標(biāo)。

  作者:崔瑋 王文麗 單位:中國(guó)地質(zhì)大學(xué)長(zhǎng)城學(xué)院信息工程系

【數(shù)學(xué)建模論文】相關(guān)文章:

數(shù)學(xué)建模論文模板07-22

數(shù)學(xué)建模A優(yōu)秀論文08-01

簡(jiǎn)單的數(shù)學(xué)建模小論文09-02

數(shù)學(xué)建模論文(通用7篇)05-20

(精)數(shù)學(xué)建模論文模板15篇07-21

數(shù)學(xué)建模優(yōu)秀論文(通用10篇)08-02

數(shù)據(jù)建模論文格式06-29

數(shù)學(xué)建模課題開題報(bào)告08-14

數(shù)學(xué)建模教育的作用與開展策略(通用6篇)09-07

數(shù)學(xué)教學(xué)論文11-06