初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而肯定成績(jī),得到經(jīng)驗(yàn),找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料。同時(shí)總結(jié)是一個(gè)詞語(yǔ),可做動(dòng)詞,也可作名詞,另外也是一種應(yīng)用文體。對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性的結(jié)論。
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
1、正方形的概念
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每一條對(duì)角線(xiàn)平分一組對(duì)角;
(4)正方形是軸對(duì)稱(chēng)圖形,有4條對(duì)稱(chēng)軸;
(5)正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對(duì)角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;
(6)正方形的一條對(duì)角線(xiàn)上的一點(diǎn)到另一條對(duì)角線(xiàn)的兩端點(diǎn)的距離相等。
3、正方形的判定
(1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
(2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
第十六章 分式
一、定義:如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子 叫做分式。
二、分式基本性質(zhì):分式的分子與分母同乘或除以一個(gè)不等于0的整式,分式的值不變。
三、分式計(jì)算:分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒置后,與被除式相乘。
分式乘方:分式乘方要把分子、分母分別乘方。
四、整數(shù)指數(shù)冪:(1) (2)較小數(shù)的科學(xué)記數(shù)法;
五、分式方程檢驗(yàn)方法:將整式方程的解帶入最簡(jiǎn)公分母,如果最簡(jiǎn)公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的解。(這個(gè)解是增根,原方程無(wú)解)。
第十七章 反比例函數(shù)
一、形如y= (k為常數(shù),k≠0)的函數(shù)稱(chēng)為反比例函數(shù);
二、反比例函數(shù)的圖像屬于雙曲線(xiàn);
三、性質(zhì):當(dāng)k>0時(shí),雙曲線(xiàn)的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小;
當(dāng)k<0時(shí),雙曲線(xiàn)的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。
第十八章 勾股定理
一、勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么
二、勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿(mǎn)足 ,那么這個(gè)三角形是直角三角形。
三、經(jīng)過(guò)證明被確認(rèn)正確的命題叫做定理。
四、我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十九章 四邊形
一、平行四邊形:
1、定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2、性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等;平行四邊形的對(duì)角線(xiàn)互相平分。
3、判定:(1)兩組對(duì)邊分別相等的四邊形是平行四邊形;
(2)兩組對(duì)角分別相等的四邊形是平行四邊形;
(3)對(duì)角線(xiàn)互相平分的四邊形是平行四邊形;
(4)一組對(duì)邊平行且相等的四邊形是平行四邊形。
(5)有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。(定義)
4、三角形的中位線(xiàn)平行于三角形的第三邊,且等于第三邊的一半。
二、矩形:
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形。
2、性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線(xiàn)平分且相等。
3、判定:(1)有一個(gè)角是直角的平行四邊形叫做矩形。(定義)
(2)對(duì)角線(xiàn)相等的平行四邊形是矩形。
(3)有三個(gè)角是直角的四邊形是矩形。
4、直角三角形斜邊上的中線(xiàn)等于斜邊的一半。
三、菱形:
1、定義:一組鄰邊相等的平行四邊形是菱形
2、性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角。
3、判定:(1)一組鄰邊相等的平行四邊形是菱形。(定義)
(2)對(duì)角線(xiàn)互相垂直的平行四邊形是菱形。
(3)四條邊相等的四邊形是菱形。
4、S菱形=底×高 S菱形= ab(a、b為兩條對(duì)角線(xiàn))
四、正方形:
1、定義:有一組鄰邊相等的矩形是正方形;蛴幸粋(gè)角是直角的菱形是正方形。
2、性質(zhì):四條邊都相等,四個(gè)角都是直角;正方形既是矩形,又是菱形。
3、判定:(1)鄰邊相等的矩形是正方形。
(2)有一個(gè)角是直角的菱形是正方形。
五、梯形:
1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。
2、等腰梯形定義:兩腰相等的梯形叫做等腰梯形。
性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線(xiàn)相等。
判定:同一底上兩個(gè)角相等的梯形是等腰梯形;對(duì)角線(xiàn)相等的梯形是等腰梯形。
3、梯形的中位線(xiàn)分別平行于上、下兩底,且等于上、下兩底和的一半。
六、重心:
1、線(xiàn)段的重心就是線(xiàn)段的中點(diǎn)。
2、平行四邊形的重心是它的兩條對(duì)角線(xiàn)的交點(diǎn)。
3、三角形的三條中線(xiàn)交于疑點(diǎn),這一點(diǎn)就是三角形的重心。
七、數(shù)學(xué)活動(dòng)(教材115頁(yè)):
1、折紙多60°、30°、15°的角證明方法(重點(diǎn)30°角)
2、寬和長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形。
第二十章 數(shù)據(jù)的分析
一、加權(quán)平均數(shù):計(jì)算公式(教材125頁(yè)。)
二、中位數(shù):將一組數(shù)據(jù)按照由小到大(大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
三、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
四、極差:一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。
五、方差:
1、計(jì)算公式: ( 表示 的平均數(shù))
2、性質(zhì):方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。
六、數(shù)據(jù)的收集與整理的步驟:
1.收集數(shù)據(jù) 2.整理數(shù)據(jù) 3.描述數(shù)據(jù) 4.分析數(shù)據(jù) 5.撰寫(xiě)調(diào)查報(bào)告
初二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、實(shí)數(shù)的概念及分類(lèi)
1、實(shí)數(shù)的分類(lèi)
一是分類(lèi)是:正數(shù)、負(fù)數(shù)、0;
另一種分類(lèi)是:有理數(shù)、無(wú)理數(shù)
將兩種分類(lèi)進(jìn)行組合:負(fù)有理數(shù),負(fù)無(wú)理數(shù),0,正有理數(shù),正無(wú)理數(shù)
2、無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。
在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這一時(shí)之,歸納起來(lái)有四類(lèi):
(1)開(kāi)方開(kāi)不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;
(4)某些三角函數(shù)值,如sin60o等
二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對(duì)值
1、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
2、絕對(duì)值
在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值。(|a|≥0)。零的絕對(duì)值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。
4、數(shù)軸
規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸(畫(huà)數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。
初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
數(shù)學(xué)家也研究純數(shù)學(xué),也就是數(shù)學(xué)本身,而不以任何實(shí)際應(yīng)用為目標(biāo).雖然有許多工作以研究純數(shù)學(xué)為開(kāi)端,但之后也許會(huì)發(fā)現(xiàn)合適的應(yīng)用.下面是小編整理的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納,歡迎大家參考!
第一章分式
1分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2分式的運(yùn)算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減
3整數(shù)指數(shù)冪的加減乘除法
4分式方程及其解法
第二章反比例函數(shù)
1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線(xiàn)
表達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用
第三章勾股定理
1勾股定理:直角三角形的兩個(gè)直角邊的平方和等于斜邊的平方
2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形
第四章四邊形
1平行四邊形
性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線(xiàn)互相平分。
判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;
兩組對(duì)角分別相等的四邊形是平行四邊形;
對(duì)角線(xiàn)互相平分的四邊形是平行四邊形;
初二下冊(cè)每一章數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
數(shù)學(xué)被應(yīng)用在很多不同的領(lǐng)域上,包括科學(xué)、工程、醫(yī)學(xué)和經(jīng)濟(jì)學(xué)等.數(shù)學(xué)在這些領(lǐng)域的應(yīng)用一般被稱(chēng)為應(yīng)用數(shù)學(xué),有時(shí)亦會(huì)激起新的數(shù)學(xué)發(fā)現(xiàn),并促成全新數(shù)學(xué)學(xué)科的發(fā)展.下面是小編整理的關(guān)于每一章數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家參考!
1.定義:形如y= (k為常數(shù),k≠0)的函數(shù)稱(chēng)為反比例函數(shù)。
2.其他形式 xy=k (k為常數(shù),k≠0)都是。
3.圖像:反比例函數(shù)的圖像屬于雙曲線(xiàn)。
反比例函數(shù)的圖象既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形。
有兩條對(duì)稱(chēng)軸:直線(xiàn)y=x和 y=-x。 對(duì)稱(chēng)中心是:原點(diǎn)
3.性質(zhì):當(dāng)k>0時(shí)雙曲線(xiàn)的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小。
當(dāng)k<0時(shí)雙曲線(xiàn)的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸
所作的垂線(xiàn)段與兩坐標(biāo)軸圍成的矩形的面積。
第十八章 勾股定理
1.勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2。,那么這個(gè)三角形是直角三角形。
3.經(jīng)過(guò)證明被確認(rèn)正確的命題叫做定理。
我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
初二數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)
數(shù)學(xué)被應(yīng)用在很多不同的領(lǐng)域上,包括科學(xué)、工程、醫(yī)學(xué)和經(jīng)濟(jì)學(xué)等.下面是小編整理的關(guān)于數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié),歡迎大家參考!
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱(chēng)y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線(xiàn),可以作出一次函數(shù)的圖像——一條直線(xiàn)。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線(xiàn)必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)
初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)
代數(shù)學(xué)可以說(shuō)是最為人們廣泛接受的“數(shù)學(xué)”.可以說(shuō)每一個(gè)人從小時(shí)候開(kāi)始學(xué)數(shù)數(shù)起,最先接觸到的數(shù)學(xué)就是代數(shù)學(xué)。下面是小編整理的關(guān)于初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié),歡迎大家參考!
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的.三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫(huà)其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。
初二數(shù)學(xué)立方根平方根知識(shí)點(diǎn)總結(jié)歸納
數(shù)學(xué)起源于人類(lèi)早期的生產(chǎn)活動(dòng),古巴比倫人從遠(yuǎn)古時(shí)代開(kāi)始已經(jīng)積累了一定的數(shù)學(xué)知識(shí),并能應(yīng)用實(shí)際問(wèn)題.從數(shù)學(xué)本身看,他們的數(shù)學(xué)知識(shí)也只是觀察和經(jīng)驗(yàn)所得,沒(méi)有綜合結(jié)論和證明,但也要充分肯定他們對(duì)數(shù)學(xué)所做出的貢獻(xiàn).下面是小編整理的關(guān)于數(shù)學(xué)立方根平方根知識(shí)點(diǎn)總結(jié)歸納,歡迎大家參考!
立方根知識(shí)點(diǎn)總結(jié)
知識(shí)要領(lǐng):如果一個(gè)數(shù)x的立方等于a,即x的三次方等于a(x^3=a),即3個(gè)x連續(xù)相乘等于a,那么這個(gè)數(shù)x就叫做a的立方根。
立方根
讀作“三次根號(hào)a”其中,a叫做被開(kāi)方數(shù),3叫做根指數(shù)。(a等于所有數(shù),包括0)如果被開(kāi)方數(shù)還有指數(shù),那么這個(gè)指數(shù)(必須是三能約去的)還可以和三次根號(hào)約去。
求一個(gè)數(shù)a的立方根的運(yùn)算叫做開(kāi)立方。
立方根的性質(zhì):
、耪龜(shù)的立方根是正數(shù).⑵負(fù)數(shù)的立方根是負(fù)數(shù).⑶0的立方根是0.一般地,如果一個(gè)數(shù)X的立方等于 a,那么這個(gè)數(shù)X就叫做a的立方根(cube root,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
立方和開(kāi)立方運(yùn)算,互為逆運(yùn)算。
互為相反數(shù)的兩個(gè)數(shù)的立方根也是互為相反數(shù)。
負(fù)數(shù)不能開(kāi)平方,但能開(kāi)立方。
立方根如何與其他數(shù)作比較? 、抛鲞@兩個(gè)數(shù)的立方
、谱鞑
⑶比較被開(kāi)方數(shù)(如三次根號(hào)3大于三次根號(hào)2)
任何數(shù)(正數(shù)、負(fù)數(shù)、或零)的立方根如果存在的話(huà),必定只有一個(gè).
初二數(shù)學(xué)一次函數(shù)知識(shí)點(diǎn)總結(jié)
知識(shí)點(diǎn)1 一次函數(shù)和正比例函數(shù)的概念
若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱(chēng)y是x的一次函數(shù)(x為自變量),特別地,當(dāng)b=0時(shí),稱(chēng)y是x的正比例函數(shù).
知識(shí)點(diǎn)2 函數(shù)的圖象
由于兩點(diǎn)確定一條直線(xiàn),一般選取兩個(gè)特殊點(diǎn):直線(xiàn)與y軸的交點(diǎn),直線(xiàn)與x軸的交點(diǎn)。.不必一定選取這兩個(gè)特殊點(diǎn).
畫(huà)正比例函數(shù)y=kx的圖象時(shí),只要描出點(diǎn)(0,0),(1,k)即可.
知識(shí)點(diǎn)3一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的性質(zhì)
(1)k的正負(fù)決定直線(xiàn)的傾斜方向;
、賙>0時(shí),y的值隨x值的增大而增大;
、趉﹤O時(shí),y的值隨x值的增大而減小.
(2)|k|大小決定直線(xiàn)的傾斜程度,即|k|越大
、佼(dāng)b>0時(shí),直線(xiàn)與y軸交于正半軸上;
②當(dāng)b<0時(shí),直線(xiàn)與y軸交于負(fù)半軸上;
③當(dāng)b=0時(shí),直線(xiàn)經(jīng)過(guò)原點(diǎn),是正比例函數(shù).
(4)由于k,b的符號(hào)不同,直線(xiàn)所經(jīng)過(guò)的象限也不同;
、偃鐖D所示,當(dāng)k>0,b>0時(shí),直線(xiàn)經(jīng)過(guò)第一、二、三象限(直線(xiàn)不經(jīng)過(guò)第四象限);
、谌鐖D所示,當(dāng)k>0,b
、廴鐖D所示,當(dāng)k﹤O,b>0時(shí),直線(xiàn)經(jīng)過(guò)第一、二、四象限(直線(xiàn)不經(jīng)過(guò)第三象限);
、苋鐖D所示,當(dāng)k﹤O,b﹤O時(shí),直線(xiàn)經(jīng)過(guò)第二、三、四象限(直線(xiàn)不經(jīng)過(guò)第一象限).
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門(mén)學(xué)科,從某種角度看屬于形式科學(xué)的一種。以下是小編整理的關(guān)于初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié),希望大家認(rèn)真閱讀!
第十一章 三角形
一、知識(shí)結(jié)構(gòu)圖
邊
與三角形有關(guān)的線(xiàn)段 高
中線(xiàn)
角平分線(xiàn)
三角形的內(nèi)角和 多邊形的內(nèi)角和
三角形的外角和 多邊形的外角和
二、知識(shí)定義
三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。
三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。
中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。
角平分線(xiàn):三角形的一個(gè)內(nèi)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。
三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
多邊形:在平面內(nèi),由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。
多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線(xiàn)組成的角叫做多邊形的外角。
多邊形的對(duì)角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對(duì)角線(xiàn)。
正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。